These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 38795564)

  • 21. Apprehensions and emerging solutions in ML-based protein structure prediction.
    Dahlström KM; Salminen TA
    Curr Opin Struct Biol; 2024 Jun; 86():102819. PubMed ID: 38631107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational Methods and Deep Learning for Elucidating Protein Interaction Networks.
    Vora DS; Kalakoti Y; Sundar D
    Methods Mol Biol; 2023; 2553():285-323. PubMed ID: 36227550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of Protein Interactions by Structural Matching: Prediction of PPI Networks and the Effects of Mutations on PPIs that Combines Sequence and Structural Information.
    Tuncbag N; Keskin O; Nussinov R; Gursoy A
    Methods Mol Biol; 2017; 1558():255-270. PubMed ID: 28150242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of deep learning methods for blind protein contact prediction in CASP12.
    Wang S; Sun S; Xu J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):67-77. PubMed ID: 28845538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Critical assessment of methods of protein structure prediction (CASP)-Round XV.
    Kryshtafovych A; Schwede T; Topf M; Fidelis K; Moult J
    Proteins; 2023 Dec; 91(12):1539-1549. PubMed ID: 37920879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling of protein complexes in CASP14 with emphasis on the interaction interface prediction.
    Dapkūnas J; Olechnovič K; Venclovas Č
    Proteins; 2021 Dec; 89(12):1834-1843. PubMed ID: 34176161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep learning-driven insights into super protein complexes for outer membrane protein biogenesis in bacteria.
    Gao M; Nakajima An D; Skolnick J
    Elife; 2022 Dec; 11():. PubMed ID: 36576775
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies.
    Tamò G; Maesani A; Träger S; Degiacomi MT; Floreano D; Dal Peraro M
    Sci Rep; 2017 Mar; 7(1):235. PubMed ID: 28331186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Docking approaches for modeling multi-molecular assemblies.
    Rosell M; Fernández-Recio J
    Curr Opin Struct Biol; 2020 Oct; 64():59-65. PubMed ID: 32615514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automatic structure prediction of oligomeric assemblies using Robetta in CASP12.
    Park H; Kim DE; Ovchinnikov S; Baker D; DiMaio F
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):283-291. PubMed ID: 28913931
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrating Large-Scale Protein Structure Prediction into Human Genetics Research.
    Correa Marrero M; Jänes J; Baptista D; Beltrao P
    Annu Rev Genomics Hum Genet; 2024 Aug; 25(1):123-140. PubMed ID: 38621234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overview of AlphaFold2 and breakthroughs in overcoming its limitations.
    Wang L; Wen Z; Liu SW; Zhang L; Finley C; Lee HJ; Fan HS
    Comput Biol Med; 2024 Jun; 176():108620. PubMed ID: 38761500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of protein structure and AI.
    Ohno S; Manabe N; Yamaguchi Y
    J Hum Genet; 2024 Oct; 69(10):477-480. PubMed ID: 38177398
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep learning in modeling protein complex structures: From contact prediction to end-to-end approaches.
    Lin P; Li H; Huang SY
    Curr Opin Struct Biol; 2024 Apr; 85():102789. PubMed ID: 38402744
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational modeling of protein assemblies.
    Soni N; Madhusudhan MS
    Curr Opin Struct Biol; 2017 Jun; 44():179-189. PubMed ID: 28505542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling Protein Complexes and Molecular Assemblies Using Computational Methods.
    Launay R; Teppa E; Esque J; André I
    Methods Mol Biol; 2023; 2553():57-77. PubMed ID: 36227539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The human touch: Utilizing AlphaFold 3 to analyze structures of endogenous metabolons.
    Träger TK; Tüting C; Kastritis PL
    Structure; 2024 Oct; 32(10):1555-1562. PubMed ID: 39303718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures.
    Maheshwari S; Brylinski M
    BMC Struct Biol; 2015 Nov; 15():23. PubMed ID: 26597230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Large oligomeric complex structures can be computationally assembled by efficiently combining docked interfaces.
    Dietzen M; Kalinina OV; Taškova K; Kneissl B; Hildebrandt AK; Jaenicke E; Decker H; Lengauer T; Hildebrandt A
    Proteins; 2015 Oct; 83(10):1887-99. PubMed ID: 26248608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning.
    Gainza P; Sverrisson F; Monti F; Rodolà E; Boscaini D; Bronstein MM; Correia BE
    Nat Methods; 2020 Feb; 17(2):184-192. PubMed ID: 31819266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.