BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38796111)

  • 1. A novel thin plate spline methodology to model tissue surfaces and quantify tumor cell invasion in organ-on-chip models.
    Elton E; Strelez C; Ung N; Perez R; Ghaffarian K; Hixon D; Matasci N; Mumenthaler SM
    SLAS Discov; 2024 Jun; 29(4):100163. PubMed ID: 38796111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel thin plate spline methodology to model tissue surfaces and quantify tumor cell invasion in organ-on-chip models.
    Elton E; Strelez C; Ung N; Perez R; Ghaffarian K; Matasci N; Mumenthaler SM
    bioRxiv; 2023 Nov; ():. PubMed ID: 38045424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Shelf-Stable Coating for Microfluidic Organ-on-a-Chip Using Bioinspired Catecholamine Polymers.
    Khetani S; Yong KW; Ozhukil Kollath V; Eastick E; Azarmanesh M; Karan K; Sen A; Sanati-Nezhad A
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):6910-6923. PubMed ID: 31971367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organ Chips and Visualization of Biological Systems.
    Tian T; Liu J; Zhu H
    Adv Exp Med Biol; 2023; 1199():155-183. PubMed ID: 37460731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplexed imaging and effluent analysis to monitor cancer cell intravasation using a colorectal cancer-on-chip.
    Strelez C; Ghaffarian K; Mumenthaler SM
    STAR Protoc; 2021 Dec; 2(4):100984. PubMed ID: 34927093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic endothelium-on-a-chip development, from in vivo to in vitro experimental models.
    Bulboacă AE; Boarescu PM; Melincovici CS; Mihu CM
    Rom J Morphol Embryol; 2020; 61(1):15-23. PubMed ID: 32747891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel organ-chip system emulates three-dimensional architecture of the human epithelia and the mechanical forces acting on it.
    Varone A; Nguyen JK; Leng L; Barrile R; Sliz J; Lucchesi C; Wen N; Gravanis A; Hamilton GA; Karalis K; Hinojosa CD
    Biomaterials; 2021 Aug; 275():120957. PubMed ID: 34130145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluidic circuit board with modular sensor and valves enables stand-alone, tubeless microfluidic flow control in organs-on-chips.
    Vivas A; van den Berg A; Passier R; Odijk M; van der Meer AD
    Lab Chip; 2022 Mar; 22(6):1231-1243. PubMed ID: 35178541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology.
    Watson DE; Hunziker R; Wikswo JP
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comprehensive Review of Organ-on-a-Chip Technology and Its Applications.
    Farhang Doost N; Srivastava SK
    Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-site metastasis-on-a-chip microphysiological system for assessing metastatic preference of cancer cells.
    Aleman J; Skardal A
    Biotechnol Bioeng; 2019 Apr; 116(4):936-944. PubMed ID: 30450540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining Human Organoids and Organ-on-a-Chip Technology to Model Intestinal Region-Specific Functionality.
    Kulkarni G; Apostolou A; Ewart L; Lucchesi C; Kasendra M
    J Vis Exp; 2022 May; (183):. PubMed ID: 35604153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Brain-on-a-Chip: From Key Technology to System Integration and Application.
    Wang Z; Zhang Y; Li Z; Wang H; Li N; Deng Y
    Small; 2023 Dec; 19(52):e2304427. PubMed ID: 37653590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organs-on-chips technologies - A guide from disease models to opportunities for drug development.
    Monteduro AG; Rizzato S; Caragnano G; Trapani A; Giannelli G; Maruccio G
    Biosens Bioelectron; 2023 Jul; 231():115271. PubMed ID: 37060819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmentally inspired human 'organs on chips'.
    Ingber DE
    Development; 2018 May; 145(16):. PubMed ID: 29776965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organ-on-Chip platforms to study tumor evolution and chemosensitivity.
    Dsouza VL; Kuthethur R; Kabekkodu SP; Chakrabarty S
    Biochim Biophys Acta Rev Cancer; 2022 May; 1877(3):188717. PubMed ID: 35304293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosensors integrated 3D organoid/organ-on-a-chip system: A real-time biomechanical, biophysical, and biochemical monitoring and characterization.
    Liu S; Kumari S; He H; Mishra P; Singh BN; Singh D; Liu S; Srivastava P; Li C
    Biosens Bioelectron; 2023 Jul; 231():115285. PubMed ID: 37058958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Modular Microfluidic Organoid Platform Using LEGO-Like Bricks.
    Carvalho DJ; Kip AM; Tegel A; Stich M; Krause C; Romitti M; Branca C; Verhoeven B; Costagliola S; Moroni L; Giselbrecht S
    Adv Healthc Mater; 2024 May; 13(13):e2303444. PubMed ID: 38247306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patient-Specific Organoid and Organ-on-a-Chip: 3D Cell-Culture Meets 3D Printing and Numerical Simulation.
    Zheng F; Xiao Y; Liu H; Fan Y; Dao M
    Adv Biol (Weinh); 2021 Jun; 5(6):e2000024. PubMed ID: 33856745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.