BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38796884)

  • 1. AVBAE-MODFR: A novel deep learning framework of embedding and feature selection on multi-omics data for pan-cancer classification.
    Li M; Guo H; Wang K; Kang C; Yin Y; Zhang H
    Comput Biol Med; 2024 Jul; 177():108614. PubMed ID: 38796884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data.
    Rong Z; Liu Z; Song J; Cao L; Yu Y; Qiu M; Hou Y
    Comput Biol Med; 2022 Nov; 150():106085. PubMed ID: 36162197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-omics integration method based on attention deep learning network for biomedical data classification.
    Gong P; Cheng L; Zhang Z; Meng A; Li E; Chen J; Zhang L
    Comput Methods Programs Biomed; 2023 Apr; 231():107377. PubMed ID: 36739624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping.
    Madhumita ; Paul S
    Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A denoised multi-omics integration framework for cancer subtype classification and survival prediction.
    Pang J; Liang B; Ding R; Yan Q; Chen R; Xu J
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37594302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self Attention for multi-omics integration with incomplete multi-omics data.
    Zhao C; Liu A; Zhang X; Cao X; Ding Z; Sha Q; Shen H; Deng HW; Zhou W
    Res Sq; 2023 May; ():. PubMed ID: 37205427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of multi-omics data using adaptive graph learning and attention mechanism for patient classification and biomarker identification.
    Ouyang D; Liang Y; Li L; Ai N; Lu S; Yu M; Liu X; Xie S
    Comput Biol Med; 2023 Sep; 164():107303. PubMed ID: 37586201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer.
    Wang C; Zhang M; Zhao J; Li B; Xiao X; Zhang Y
    Comput Biol Med; 2023 Sep; 163():107220. PubMed ID: 37406589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multimodal graph neural network framework for cancer molecular subtype classification.
    Li B; Nabavi S
    BMC Bioinformatics; 2024 Jan; 25(1):27. PubMed ID: 38225583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autoencoder-assisted latent representation learning for survival prediction and multi-view clustering on multi-omics cancer subtyping.
    Zhu S; Wang W; Fang W; Cui M
    Math Biosci Eng; 2023 Nov; 20(12):21098-21119. PubMed ID: 38124589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CLCLSA: Cross-omics linked embedding with contrastive learning and self attention for integration with incomplete multi-omics data.
    Zhao C; Liu A; Zhang X; Cao X; Ding Z; Sha Q; Shen H; Deng HW; Zhou W
    Comput Biol Med; 2024 Mar; 170():108058. PubMed ID: 38295477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OmiEmbed: A Unified Multi-Task Deep Learning Framework for Multi-Omics Data.
    Zhang X; Xing Y; Sun K; Guo Y
    Cancers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deeply integrating latent consistent representations in high-noise multi-omics data for cancer subtyping.
    Cai Y; Wang S
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepKEGG: a multi-omics data integration framework with biological insights for cancer recurrence prediction and biomarker discovery.
    Lan W; Liao H; Chen Q; Zhu L; Pan Y; Chen YP
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated multi-omics analysis of ovarian cancer using variational autoencoders.
    Hira MT; Razzaque MA; Angione C; Scrivens J; Sawan S; Sarker M
    Sci Rep; 2021 Mar; 11(1):6265. PubMed ID: 33737557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep learning approach based on multi-omics data integration to construct a risk stratification prediction model for skin cutaneous melanoma.
    Li W; Huang Q; Peng Y; Pan S; Hu M; Wang P; He Y
    J Cancer Res Clin Oncol; 2023 Nov; 149(17):15923-15938. PubMed ID: 37673824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainty-aware dynamic integration for multi-omics classification of tumors.
    Du L; Liu C; Wei R; Chen J
    J Cancer Res Clin Oncol; 2023 Jul; 149(7):3301-3312. PubMed ID: 35925427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self Attention for multi-omics integration with incomplete multi-omics data.
    Zhao C; Liu A; Zhang X; Cao X; Ding Z; Sha Q; Shen H; Deng HW; Zhou W
    ArXiv; 2023 Apr; ():. PubMed ID: 37090237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-omics: A Self-supervised Learning Framework for Multi-omics Cancer Data.
    Hashim S; Nandakumar K; Yaqub M
    Pac Symp Biocomput; 2023; 28():263-274. PubMed ID: 36540983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.