BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38797045)

  • 21. Intraoperative cone-beam and slot-beam CT: 3D image quality and dose with a slot collimator on the O-arm imaging system.
    Zhang X; Zbijewski W; Huang Y; Uneri A; Jones CK; Lo SL; Witham TF; Luciano M; Anderson WS; Helm PA; Siewerdsen JH
    Med Phys; 2021 Nov; 48(11):6800-6809. PubMed ID: 34519364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On image quality metrics and the usefulness of grids in digital mammography.
    Chen H; Danielsson M; Xu C; Cederström B
    J Med Imaging (Bellingham); 2015 Jan; 2(1):013501. PubMed ID: 26158077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance and usefulness evaluation of a software-based scatter correction technique for mammographic images.
    Kim K; Cho EI; Jeong HW; Lee Y
    Heliyon; 2024 Jan; 10(2):e24862. PubMed ID: 38312677
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of scatter rejection and low-contrast performance of scan equalization digital radiography (SEDR), slot-scan digital radiography, and full-field digital radiography systems for chest phantom imaging.
    Liu X; Shaw CC; Lai CJ; Wang T
    Med Phys; 2011 Jan; 38(1):23-33. PubMed ID: 21361171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radiation dose considerations in digital radiography with an anti-scatter grid: A study using adult and pediatric phantoms.
    Kawashima H; Ichikawa K; Kitao A; Matsubara T; Sugiura T; Kobayashi T; Kobayashi S
    J Appl Clin Med Phys; 2023 Sep; 24(9):e14081. PubMed ID: 37491809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-ratio grid considerations in mobile chest radiography.
    Scott AW; Gauntt DM; Yester MV; Barnes GT
    Med Phys; 2012 Jun; 39(6):3142-53. PubMed ID: 22755699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scatter Reduction and Correction for Dual-Source Cone-Beam CT Using Prepatient Grids.
    Ren L; Chen Y; Zhang Y; Giles W; Jin J; Yin FF
    Technol Cancer Res Treat; 2016 Jun; 15(3):416-27. PubMed ID: 26009495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. X-ray scatter correction for multi-source interior computed tomography.
    Gong H; Yan H; Jia X; Li B; Wang G; Cao G
    Med Phys; 2017 Jan; 44(1):71-83. PubMed ID: 28102959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual-energy, standard and low-kVp contrast-enhanced CT-cholangiography: a comparative analysis of image quality and radiation exposure.
    Stiller W; Schwarzwaelder CB; Sommer CM; Veloza S; Radeleff BA; Kauczor HU
    Eur J Radiol; 2012 Jul; 81(7):1405-12. PubMed ID: 21458939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feasibility of dual-energy CBCT material decomposition in the human torso with 2D anti-scatter grids and grid-based scatter sampling.
    Altunbas C
    Med Phys; 2024 Jan; 51(1):334-347. PubMed ID: 37477550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monte Carlo analysis of beam blocking grid design parameters: Scatter estimation and the importance of electron backscatter.
    Bootsma GJ; Ren L; Zhang H; Jin JY; Jaffray DA
    Med Phys; 2018 Mar; 45(3):1059-1070. PubMed ID: 29360154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of soft-tissue contrast in cone-beam CT using an anti-scatter grid with a sparse sampling approach.
    Cho S; Lim S; Kim C; Wi S; Kwon T; Youn WS; Lee SH; Kang BS; Cho S
    Phys Med; 2020 Feb; 70():1-9. PubMed ID: 31931280
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental evaluation of fiber-interspaced antiscatter grids for large patient imaging with digital x-ray systems.
    Fetterly KA; Schueler BA
    Phys Med Biol; 2007 Aug; 52(16):4863-80. PubMed ID: 17671340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Potential Role of Grid-Like Software in Bedside Chest Radiography in Improving Image Quality and Dose Reduction: An Observer Preference Study.
    Ahn SY; Chae KJ; Goo JM
    Korean J Radiol; 2018; 19(3):526-533. PubMed ID: 29713231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A software-based x-ray scatter correction method for breast tomosynthesis.
    Jia Feng SS; Sechopoulos I
    Med Phys; 2011 Dec; 38(12):6643-53. PubMed ID: 22149846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feasibility study of a synchronized-moving-grid (SMOG) system to improve image quality in cone-beam computed tomography (CBCT).
    Ren L; Yin FF; Chetty IJ; Jaffray DA; Jin JY
    Med Phys; 2012 Aug; 39(8):5099-110. PubMed ID: 22894435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Guidelines for anti-scatter grid use in pediatric digital radiography.
    Fritz S; Jones AK
    Pediatr Radiol; 2014 Mar; 44(3):313-21. PubMed ID: 24281685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supine and erect abdominal radiography: A comparison of radiation dose and image quality.
    Alzyoud K; Al-Murshedi S; Abualkhael K; Alqawasmeh F; England A
    Appl Radiat Isot; 2022 Dec; 190():110477. PubMed ID: 36195039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep learning for x-ray scatter correction in dedicated breast CT.
    Pautasso JJ; Caballo M; Mikerov M; Boone JM; Michielsen K; Sechopoulos I
    Med Phys; 2023 Apr; 50(4):2022-2036. PubMed ID: 36565012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of scatter rejection and correction performance of 2D antiscatter grids in cone beam computed tomography.
    Park Y; Alexeev T; Miller B; Miften M; Altunbas C
    Med Phys; 2021 Apr; 48(4):1846-1858. PubMed ID: 33554377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.