These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 38797136)
1. Volatile organic compounds produced during postmortem processes can be linked via chromatographic profiles to individual postmortem bacterial species. Furuta K; Byrne J; Luat K; Cheung C; Carter DO; Tipton L; Perrault Uptmor KA J Chromatogr A; 2024 Aug; 1728():465017. PubMed ID: 38797136 [TBL] [Abstract][Full Text] [Related]
2. Volatile Organic Compound Profiling from Postmortem Microbes using Gas Chromatography-Mass Spectrometry. Cernosek T; Eckert KE; Carter DO; Perrault KA J Forensic Sci; 2020 Jan; 65(1):134-143. PubMed ID: 31479524 [TBL] [Abstract][Full Text] [Related]
3. A minimally-invasive method for profiling volatile organic compounds within postmortem internal gas reservoirs. Perrault KA; Stefanuto PH; Dubois LM; Varlet V; Grabherr S; Focant JF Int J Legal Med; 2017 Sep; 131(5):1271-1281. PubMed ID: 28616692 [TBL] [Abstract][Full Text] [Related]
4. Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS. Tait E; Perry JD; Stanforth SP; Dean JR J Chromatogr Sci; 2014 Apr; 52(4):363-73. PubMed ID: 23661670 [TBL] [Abstract][Full Text] [Related]
5. Assessment of volatile fingerprint by HS-SPME/GC-qMS and E-nose for the classification of cocoa bean shells using chemometrics. Barbosa-Pereira L; Rojo-Poveda O; Ferrocino I; Giordano M; Zeppa G Food Res Int; 2019 Sep; 123():684-696. PubMed ID: 31285018 [TBL] [Abstract][Full Text] [Related]
6. Analysis of volatile organic compounds and potential odour compounds in food contact paperboard using headspace two-dimensional GC-QTOF-MS. Li D; Zeng Y; Ye ZK; Li HK; Li YZ; Dong B; Su QZ; Lin QB; Xiao J; Zhong HN Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2023 Nov; 40(11):1482-1493. PubMed ID: 37831931 [TBL] [Abstract][Full Text] [Related]
7. Odor-contributing volatile compounds of wild edible Nordic mushrooms analyzed with HS-SPME-GC-MS and HS-SPME-GC-O/FID. Aisala H; Sola J; Hopia A; Linderborg KM; Sandell M Food Chem; 2019 Jun; 283():566-578. PubMed ID: 30722913 [TBL] [Abstract][Full Text] [Related]
8. Improved quantification of livestock associated odorous volatile organic compounds in a standard flow-through system using solid-phase microextraction and gas chromatography-mass spectrometry. Yang X; Zhu W; Koziel JA; Cai L; Jenks WS; Laor Y; Leeuwen JH; Hoff SJ J Chromatogr A; 2015 Oct; 1414():31-40. PubMed ID: 26456221 [TBL] [Abstract][Full Text] [Related]
9. Analysis of Volatile Compounds in Pears by HS-SPME-GC×GC-TOFMS. Wang C; Zhang W; Li H; Mao J; Guo C; Ding R; Wang Y; Fang L; Chen Z; Yang G Molecules; 2019 May; 24(9):. PubMed ID: 31075878 [TBL] [Abstract][Full Text] [Related]
11. Profiling the decomposition odour at the grave surface before and after probing. Forbes SL; Troobnikoff AN; Ueland M; Nizio KD; Perrault KA Forensic Sci Int; 2016 Feb; 259():193-9. PubMed ID: 26773229 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the volatile profile of Chinese rice wine by comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry. Yu H; Xie T; Qian X; Ai L; Chen C; Tian H J Sci Food Agric; 2019 Sep; 99(12):5444-5456. PubMed ID: 31081146 [TBL] [Abstract][Full Text] [Related]
13. In vitro volatile organic compound profiling using GC×GC-TOFMS to differentiate bacteria associated with lung infections: a proof-of-concept study. Nizio KD; Perrault KA; Troobnikoff AN; Ueland M; Shoma S; Iredell JR; Middleton PG; Forbes SL J Breath Res; 2016 Apr; 10(2):026008. PubMed ID: 27120170 [TBL] [Abstract][Full Text] [Related]
14. Thermal desorption comprehensive two-dimensional gas chromatography coupled to variable-energy electron ionization time-of-flight mass spectrometry for monitoring subtle changes in volatile organic compound profiles of human blood. Dubois LM; Perrault KA; Stefanuto PH; Koschinski S; Edwards M; McGregor L; Focant JF J Chromatogr A; 2017 Jun; 1501():117-127. PubMed ID: 28473200 [TBL] [Abstract][Full Text] [Related]
15. The influence of ageing and surface type on the odour profile of blood-detection dog training aids. Rust L; Nizio KD; Forbes SL Anal Bioanal Chem; 2016 Sep; 408(23):6349-60. PubMed ID: 27382970 [TBL] [Abstract][Full Text] [Related]
16. Coupling of comprehensive two-dimensional gas chromatography with quadrupole mass spectrometry: application to the identification of atmospheric volatile organic compounds. Wang Y; Xu X; Yin L; Cheng H; Mao T; Zhang K; Lin W; Meng Z; Palasota JA J Chromatogr A; 2014 Sep; 1361():229-39. PubMed ID: 25151040 [TBL] [Abstract][Full Text] [Related]
17. Multivariate regression modelling for gender prediction using volatile organic compounds from hand odor profiles via HS-SPME-GC-MS. Frazier CJG; Gokool VA; Holness HK; Mills DK; Furton KG PLoS One; 2023; 18(7):e0286452. PubMed ID: 37405979 [TBL] [Abstract][Full Text] [Related]
18. On sample preparation methods for fermented beverage VOCs profiling by GCxGC-TOFMS. Zhang P; Carlin S; Lotti C; Mattivi F; Vrhovsek U Metabolomics; 2020 Sep; 16(10):102. PubMed ID: 32949264 [TBL] [Abstract][Full Text] [Related]
19. Analysis of volatile organic compounds using cryogen-free thermal modulation based comprehensive two-dimensional gas chromatography coupled with quadrupole mass spectrometry. Guan X; Zhao Z; Cai S; Wang S; Lu H J Chromatogr A; 2019 Feb; 1587():227-238. PubMed ID: 30573311 [TBL] [Abstract][Full Text] [Related]
20. Analysis of honeybush tea (Cyclopia spp.) volatiles by comprehensive two-dimensional gas chromatography using a single-stage thermal modulator. Ntlhokwe G; Tredoux AGJ; Górecki T; Edwards M; Vestner J; Muller M; Erasmus L; Joubert E; Christel Cronje J; de Villiers A Anal Bioanal Chem; 2017 Jul; 409(17):4127-4138. PubMed ID: 28417179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]