BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38797142)

  • 1. Design of Mg-Ni binary single-atom catalysts for conversion of carbon dioxide to syngas with a wide tunable ratio: Each species doing its own job or working together to win?
    Yu G; Wang X; Lv S; Wang B; Wang L; Zhang J
    J Colloid Interface Sci; 2024 Oct; 671():165-174. PubMed ID: 38797142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Conversion of CO
    He Q; Liu D; Lee JH; Liu Y; Xie Z; Hwang S; Kattel S; Song L; Chen JG
    Angew Chem Int Ed Engl; 2020 Feb; 59(8):3033-3037. PubMed ID: 31826317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable CO/H
    Liang Z; Song L; Sun M; Huang B; Du Y
    Sci Adv; 2021 Nov; 7(47):eabl4915. PubMed ID: 34797721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomically Dispersed Fe-Co Bimetallic Catalysts for the Promoted Electroreduction of Carbon Dioxide.
    Chen Z; Zhang G; Wen Y; Chen N; Chen W; Regier T; Dynes J; Zheng Y; Sun S
    Nanomicro Lett; 2021 Dec; 14(1):25. PubMed ID: 34889998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of nickel-based electrocatalyst size on electrochemical carbon dioxide reduction: A density functional theory study.
    Wang F; Meng Y; Chen X; Zhang L; Li G; Shen Z; Wang Y; Cao Y
    J Colloid Interface Sci; 2022 Jun; 615():587-596. PubMed ID: 35152078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable Syngas Production through CO
    Daiyan R; Chen R; Kumar P; Bedford NM; Qu J; Cairney JM; Lu X; Amal R
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9307-9315. PubMed ID: 32023413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient electrochemical carbon dioxide reduction to syngas with tunable ratios over pyridinic- nitrogen rich ultrathin carbon nanosheets.
    Wei B; Hao J; Ge B; Luo W; Chen Y; Xiong Y; Li L; Shi W
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2650-2659. PubMed ID: 34774319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical Dual Single-Atom Catalysts with Coupled CoN
    Chen Y; Xia M; Zhou C; Zhang Y; Zhou C; Xu F; Feng B; Wang X; Yang L; Hu Z; Wu Q
    ACS Nano; 2023 Nov; 17(21):22095-22105. PubMed ID: 37916602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen-Bridged Indium-Nickel Atomic Pair as Dual-Metal Active Sites Enabling Synergistic Electrocatalytic CO
    Fan Z; Luo R; Zhang Y; Zhang B; Zhai P; Zhang Y; Wang C; Gao J; Zhou W; Sun L; Hou J
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202216326. PubMed ID: 36519523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing Undercoordinated Ni-N
    Leverett J; Daiyan R; Gong L; Iputera K; Tong Z; Qu J; Ma Z; Zhang Q; Cheong S; Cairney J; Liu RS; Lu X; Xia Z; Dai L; Amal R
    ACS Nano; 2021 Jul; 15(7):12006-12018. PubMed ID: 34192868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination Confined Thermolysis Synthesis of the Ni Single Atom Catalyst on the N-Doped Commercial Carbon for the Production of Syngas.
    Chen Y; Shen Y; Dai L; Yao S; An C
    Inorg Chem; 2024 Jan; 63(4):2131-2137. PubMed ID: 38212991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid Nitrogen Sources Assisting Gram-Scale Production of Single-Atom Catalysts for Electrochemical Carbon Dioxide Reduction.
    An B; Zhou J; Duan L; Liu X; Yu G; Ren T; Guo X; Li Y; Ă…gren H; Wang L; Zhang J
    Adv Sci (Weinh); 2023 Apr; 10(11):e2205639. PubMed ID: 36793146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A supported Ni
    Shen J; Pan Z
    J Colloid Interface Sci; 2024 Jun; 673():486-495. PubMed ID: 38879990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. d-band center engineering of single Cu atom and atomic Ni clusters for enhancing electrochemical CO
    Li R; Tung CW; Zhu B; Lin Y; Tian FZ; Liu T; Chen HM; Kuang P; Yu J
    J Colloid Interface Sci; 2024 Jun; 674():326-335. PubMed ID: 38936089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing Gold Single-Atom Catalysts on Hierarchical Nitrogen-Doped Carbon Nanocages for Carbon Dioxide Electroreduction to Syngas.
    Jiao L; Mao C; Xu F; Cheng X; Cui P; Wang X; Yang L; Wu Q; Hu Z
    Small; 2024 Apr; 20(16):e2305513. PubMed ID: 38032150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifunctional Nitrogen and Cobalt Codoped Hollow Carbon for Electrochemical Syngas Production.
    Song X; Zhang H; Yang Y; Zhang B; Zuo M; Cao X; Sun J; Lin C; Li X; Jiang Z
    Adv Sci (Weinh); 2018 Jul; 5(7):1800177. PubMed ID: 30027049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical Reduction of CO
    Qin B; Li Y; Fu H; Wang H; Chen S; Liu Z; Peng F
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20530-20539. PubMed ID: 29847915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermetallic Compound with CuNi Sites for Enhancing the Selectivity of Electrochemical CO
    Yun R; Zhang B; Shi C; Xu R; Suo T
    Inorg Chem; 2023 Sep; 62(38):15790-15796. PubMed ID: 37710964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-organic framework derived single-atom catalysts for electrochemical CO
    Xie M; Wang J; Du XL; Gao N; Liu T; Li Z; Xiao G; Li T; Wang JQ
    RSC Adv; 2022 Nov; 12(50):32518-32525. PubMed ID: 36425674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational Design of FeNi Bimetal Modified Covalent Organic Frameworks for Photoconversion of Anthropogenic CO
    Han B; Ou X; Zhong Z; Liang S; Deng H; Lin Z
    Small; 2020 Sep; 16(38):e2002985. PubMed ID: 32812346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.