BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38797300)

  • 1. Interactions between corn starch and lingonberry polyphenols and their effects on starch digestion and glucose transport.
    Li F; Zhang X; Liu X; Zhang J; Zang D; Zhang X; Shao M
    Int J Biol Macromol; 2024 Jun; 271(Pt 2):132444. PubMed ID: 38797300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concord and Niagara Grape Juice and Their Phenolics Modify Intestinal Glucose Transport in a Coupled in Vitro Digestion/Caco-2 Human Intestinal Model.
    Moser S; Lim J; Chegeni M; Wightman JD; Hamaker BR; Ferruzzi MG
    Nutrients; 2016 Jul; 8(7):. PubMed ID: 27399765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary polyphenols modulate starch digestion and glycaemic level: a review.
    Sun L; Miao M
    Crit Rev Food Sci Nutr; 2020; 60(4):541-555. PubMed ID: 30799629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis.
    Dhital S; Lin AH; Hamaker BR; Gidley MJ; Muniandy A
    PLoS One; 2013; 8(4):e62546. PubMed ID: 23638112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on the Influences of Five Food-Borne Polyphenols on
    Ren S; Li K; Liu Z
    J Agric Food Chem; 2019 Aug; 67(31):8617-8625. PubMed ID: 31293160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence pathways of nanocrystalline cellulose on the digestibility of corn starch: Gelatinization, structural properties, and α-amylase activity perspective.
    Xu H; Hao Z; Zhang J; Liu H; Deng C; Yu Z; Zheng M; Liu Y; Zhou Y; Xiao Y
    Carbohydr Polym; 2023 Aug; 314():120940. PubMed ID: 37173023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three anthocyanin-rich berry extracts regulate the in vitro digestibility of corn starch: Physicochemical properties, structure and α-amylase.
    Li F; Chen Z; Chang M; Zhang X; Liu X; Wang J
    Int J Biol Macromol; 2023 Dec; 253(Pt 8):127484. PubMed ID: 37875184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persimmon Tannin Decreased the Glycemic Response through Decreasing the Digestibility of Starch and Inhibiting α-Amylase, α-Glucosidase, and Intestinal Glucose Uptake.
    Li K; Yao F; Du J; Deng X; Li C
    J Agric Food Chem; 2018 Feb; 66(7):1629-1637. PubMed ID: 29388426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of tea products on the in vitro enzymatic digestibility of starch.
    Zhang H; Jiang Y; Pan J; Lv Y; Liu J; Zhang S; Zhu Y
    Food Chem; 2018 Mar; 243():345-350. PubMed ID: 29146347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hibiscus acid as an inhibitor of starch digestion in the Caco-2 cell model system.
    Hansawasdi C; Kawabata J; Kasai T
    Biosci Biotechnol Biochem; 2001 Sep; 65(9):2087-9. PubMed ID: 11676026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Branch pattern of starch internal structure influences the glucogenesis by mucosal Nt-maltase-glucoamylase.
    Lin AH; Ao Z; Quezada-Calvillo R; Nichols BL; Lin CT; Hamaker BR
    Carbohydr Polym; 2014 Oct; 111():33-40. PubMed ID: 25037326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentation in the small intestine contributes substantially to intestinal starch disappearance in calves.
    Gilbert MS; Pantophlet AJ; Berends H; Pluschke AM; van den Borne JJ; Hendriks WH; Schols HA; Gerrits WJ
    J Nutr; 2015 Jun; 145(6):1147-55. PubMed ID: 25878206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of red kidney bean protein on starch digestion and exploring its underlying mechanism.
    Wang Z; Fan M; Hannachi K; Li Y; Qian H; Wang L
    Int J Biol Macromol; 2023 Dec; 253(Pt 6):127023. PubMed ID: 37751820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow digestion property of octenyl succinic anhydride modified waxy maize starch in the presence of tea polyphenols.
    Peng S; Xue L; Leng X; Yang R; Zhang G; Hamaker BR
    J Agric Food Chem; 2015 Mar; 63(10):2820-9. PubMed ID: 25715909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of gelatinized wheat starch digestion and fermentation profiles by young apple polyphenols in vitro.
    Li D; Yang Y; Yang X; Wang X; Guo C; Sun L; Guo Y
    Food Funct; 2021 Mar; 12(5):1983-1995. PubMed ID: 33537688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism and enzymatic contribution to in vitro test method of digestion for maize starches differing in amylose content.
    Brewer LR; Cai L; Shi YC
    J Agric Food Chem; 2012 May; 60(17):4379-87. PubMed ID: 22480190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of hawthorn polyphenol extracts on the physicochemical properties and digestibility of corn starch.
    Yuan Y; Chai Z; Zheng Y; Ren Y; Ye X; Kong X; Tian J
    J Food Sci; 2024 Mar; 89(3):1337-1346. PubMed ID: 38258896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of human starch digesting enzymes and intestinal glucose transport by walnut polyphenols.
    Farazi M; Houghton MJ; Nicolotti L; Murray M; Cardoso BR; Williamson G
    Food Res Int; 2024 Aug; 189():114572. PubMed ID: 38876610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of polyphenols from lingonberry, cranberry, and red grape on in vitro digestibility of rice.
    Quek R; Henry CJ
    Int J Food Sci Nutr; 2015; 66(4):378-82. PubMed ID: 26008717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural changes of A-, B- and C-type starches of corn, potato and pea as influenced by sonication temperature and their relationships with digestibility.
    Ouyang Q; Wang X; Xiao Y; Luo F; Lin Q; Ding Y
    Food Chem; 2021 Oct; 358():129858. PubMed ID: 33933983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.