These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38797461)

  • 1. Exploring the influence of sulfadiazine-induced stress on antibiotic removal and transformation pathway using microalgae Chlorella sp.
    Ma Y; Lin S; Guo T; Guo C; Li Y; Hou Y; Gao Y; Dong R; Liu S
    Environ Res; 2024 Sep; 256():119225. PubMed ID: 38797461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidating microalgae-mediated metabolism for sulfadiazine removal mechanism and transformation pathways.
    Wang H; Hu C; Wang Y; Zhao Y; Jin C; Guo L
    Environ Pollut; 2023 Jun; 327():121598. PubMed ID: 37031851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient coupling of sulfadiazine removal with microalgae lipid production in a membrane photobioreactor.
    Gao F; Zhou JL; Zhang YR; Vadiveloo A; Chen QG; Liu JZ; Yang Q; Ge YM
    Chemosphere; 2023 Mar; 316():137880. PubMed ID: 36649892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixotrophic cultivation of Chlorella pyrenoidosa under sulfadiazine stress: High-value product recovery and toxicity tolerance evaluation.
    Wang H; Hu C; Wang Y; Jin C; She Z; Guo L
    Bioresour Technol; 2022 Nov; 363():127987. PubMed ID: 36126847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of atrazine in catalytic degradation solutions by microalgae Chlorella sp. and evaluation of toxicity of degradation products via algal growth and photosynthetic activity.
    Hu N; Xu Y; Sun C; Zhu L; Sun S; Zhao Y; Hu C
    Ecotoxicol Environ Saf; 2021 Jan; 207():111546. PubMed ID: 33254405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capabilities and mechanisms of microalgae on nutrients and florfenicol removing from marine aquaculture wastewater.
    Qian Z; Na L; Bao-Long W; Tao Z; Peng-Fei M; Wei-Xiao Z; Sraboni NZ; Zheng M; Ying-Qi Z; Liu Y
    J Environ Manage; 2022 Oct; 320():115673. PubMed ID: 35940008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae.
    Guo WQ; Zheng HS; Li S; Du JS; Feng XC; Yin RL; Wu QL; Ren NQ; Chang JS
    Bioresour Technol; 2016 Dec; 221():284-290. PubMed ID: 27643737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment.
    Wang M; Kuo-Dahab WC; Dolan S; Park C
    Bioresour Technol; 2014 Feb; 154():131-7. PubMed ID: 24384320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae.
    Xie P; Chen C; Zhang C; Su G; Ren N; Ho SH
    Water Res; 2020 Apr; 172():115475. PubMed ID: 31972413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microalgae simultaneously promote antibiotic removal and antibiotic resistance genes/bacteria attenuation in algal-bacterial granular sludge system.
    Liu W; Huang W; Cao Z; Ji Y; Liu D; Huang W; Zhu Y; Lei Z
    J Hazard Mater; 2022 Sep; 438():129286. PubMed ID: 35777142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seawater Chlorella sp. biofilm for mariculture effluent polishing under environmental combined antibiotics exposure and ecological risk evaluation based on parent antibiotics and transformation products.
    Yu C; Liu Y; Zhang Y; Shen MZ; Wang JH; Chi ZY
    Sci Total Environ; 2024 Aug; 939():173643. PubMed ID: 38821282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of metal ions on the cultivation of an oleaginous microalga Chlorella sp.
    Liu Y; Zhan JJ; Hong Y
    Environ Sci Pollut Res Int; 2017 Dec; 24(34):26594-26604. PubMed ID: 28956234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution.
    Wang L; Xue C; Wang L; Zhao Q; Wei W; Sun Y
    Bioresour Technol; 2016 Apr; 205():264-8. PubMed ID: 26803904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactive effects of roxithromycin and freshwater microalgae, Chlorella pyrenoidosa: Toxicity and removal mechanism.
    Li J; Min Z; Li W; Xu L; Han J; Li P
    Ecotoxicol Environ Saf; 2020 Mar; 191():110156. PubMed ID: 31958625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Northern green algae have the capacity to remove active pharmaceutical ingredients.
    Gojkovic Z; Lindberg RH; Tysklind M; Funk C
    Ecotoxicol Environ Saf; 2019 Apr; 170():644-656. PubMed ID: 30579165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microalgae cultivation for antibiotic oxytetracycline wastewater treatment.
    Wu S; Zhang J; Xia A; Huang Y; Zhu X; Zhu X; Liao Q
    Environ Res; 2022 Nov; 214(Pt 1):113850. PubMed ID: 35817165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous nutrient removal and biomass/lipid production by Chlorella sp. in seafood processing wastewater.
    Gao F; Peng YY; Li C; Yang GJ; Deng YB; Xue B; Guo YM
    Sci Total Environ; 2018 Nov; 640-641():943-953. PubMed ID: 30021327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing treatment performance of Chlorella pyrenoidosa on levofloxacin wastewater through microalgae-bacteria consortia: Mechanistic insights using the transcriptome.
    Zhao S; Qian J; Lu B; Tang S; He Y; Liu Y; Yan Y; Jin S
    J Hazard Mater; 2024 Nov; 479():135670. PubMed ID: 39213769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective bioremediation of tobacco wastewater by microalgae at acidic pH for synergistic biomass and lipid accumulation.
    Hao TB; Balamurugan S; Zhang ZH; Liu SF; Wang X; Li DW; Yang WD; Li HY
    J Hazard Mater; 2022 Mar; 426():127820. PubMed ID: 34865896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating anaerobic digestion and microalgae cultivation for dairy wastewater treatment and potential biochemicals production from the harvested microalgal biomass.
    Kusmayadi A; Lu PH; Huang CY; Leong YK; Yen HW; Chang JS
    Chemosphere; 2022 Mar; 291(Pt 1):133057. PubMed ID: 34838828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.