These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3880015)

  • 1. Oxidative effects of iron on erythrocytes.
    Rice-Evans C; Baysal E; Kontoghiorghes GJ; Flynn DM; Hoffbrand AV
    Free Radic Res Commun; 1985; 1(1):55-62. PubMed ID: 3880015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ascorbate removes key precursors to oxidative damage by cell-free haemoglobin in vitro and in vivo.
    Dunne J; Caron A; Menu P; Alayash AI; Buehler PW; Wilson MT; Silaghi-Dumitrescu R; Faivre B; Cooper CE
    Biochem J; 2006 Nov; 399(3):513-24. PubMed ID: 16848758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interactions of desferrioxamine and hydroxypyridone compounds with haemoglobin and erythrocytes.
    Rice-Evans C; Baysal E; Singh S; Jones SA; Jones JG
    FEBS Lett; 1989 Oct; 256(1-2):17-20. PubMed ID: 2806543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron-mediated oxidative stress in erythrocytes.
    Rice-Evans C; Baysal E
    Biochem J; 1987 May; 244(1):191-6. PubMed ID: 3663112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative damage to human red cells induced by copper and iron complexes in the presence of ascorbate.
    Shinar E; Rachmilewitz EA; Shifter A; Rahamim E; Saltman P
    Biochim Biophys Acta; 1989 Oct; 1014(1):66-72. PubMed ID: 2804091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury chloride toxicity in human erythrocytes: enhanced generation of ROS and RNS, hemoglobin oxidation, impaired antioxidant power, and inhibition of plasma membrane redox system.
    Ahmad S; Mahmood R
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5645-5657. PubMed ID: 30612358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. The relative roles of haem- and glutathione-dependent decomposition of t-butyl hydroperoxide and membrane lipid hydroperoxides in lipid peroxidation and haemolysis.
    Trotta RJ; Sullivan SG; Stern A
    Biochem J; 1983 Jun; 212(3):759-72. PubMed ID: 6882393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium meta-arsenite induced reactive oxygen species in human red blood cells: impaired antioxidant and membrane redox systems, haemoglobin oxidation, and morphological changes.
    Maheshwari N; Khan FH; Mahmood R
    Free Radic Res; 2017 May; 51(5):483-497. PubMed ID: 28480809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thalassaemic erythrocytes: cellular suicide arising from iron and glutathione-dependent oxidation reactions?
    Scott MD; Eaton JW
    Br J Haematol; 1995 Dec; 91(4):811-9. PubMed ID: 8547123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of iron salts and haemosiderin from a thalassaemia patient on oxygen radical damage as measured in the comet assay.
    Anderson D; Yardley-Jones A; Hambly RJ; Vives-Bauza C; Smykatz-Kloss V; Chua-Anusorn W; Webb J
    Teratog Carcinog Mutagen; 2000; 20(1):11-26. PubMed ID: 10607374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sickle cell membranes and oxidative damage.
    Rice-Evans C; Omorphos SC; Baysal E
    Biochem J; 1986 Jul; 237(1):265-9. PubMed ID: 3800879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of Erythrocytes Enhance the Production of Reactive Species in the Presence of Artemisinins.
    Tsamesidis I; Pério P; Pantaleo A; Reybier K
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32646002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxylamine and phenol-induced formation of methemoglobin and free radical intermediates in erythrocytes.
    Stolze K; Dadak A; Liu Y; Nohl H
    Biochem Pharmacol; 1996 Dec; 52(12):1821-9. PubMed ID: 8951340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased release of free Fe ions in human erythrocytes during aging in the circulation.
    Ando K; Ogawa K; Misaki S; Kikugawa K
    Free Radic Res; 2002 Oct; 36(10):1079-84. PubMed ID: 12516879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of vitamin C, deferoxamine, quercetin and rutin against tert-butyl hydroperoxide oxidative damage in human erythrocytes.
    Krukoski DW; Comar SR; Claro LM; Leonart MS; do Nascimento AJ
    Hematology; 2009 Jun; 14(3):168-72. PubMed ID: 19490763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of dapsone hydroxylamine to dapsone during methaemoglobin formation in human erythrocytes in vitro.
    Coleman MD; Jacobus DP
    Biochem Pharmacol; 1993 Mar; 45(5):1027-33. PubMed ID: 8461032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two mechanisms for toxic effects of hydroxylamines in human erythrocytes: involvement of free radicals and risk of potentiation.
    Evelo CT; Spooren AA; Bisschops RA; Baars LG; Neis JM
    Blood Cells Mol Dis; 1998 Sep; 24(3):280-95. PubMed ID: 10087986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox cycling of human methaemoglobin by H2O2 yields persistent ferryl iron and protein based radicals.
    Patel RP; Svistunenko DA; Darley-Usmar VM; Symons MC; Wilson MT
    Free Radic Res; 1996 Aug; 25(2):117-23. PubMed ID: 8885329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of iron in the interaction of red blood cells with methylglyoxal. Modification of L-arginine by methylglyoxal is catalyzed by iron redox cycling.
    Wittmann I; Mazák I; Pótó L; Wagner Z; Wagner L; Vas T; Kovács T; Belágyi J; Nagy J
    Chem Biol Interact; 2001 Nov; 138(2):171-87. PubMed ID: 11672699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of oxyhaemoglobin breakdown on reaction with acetylphenylhydrazine.
    French JK; Winterbourn CC; Carrell RW
    Biochem J; 1978 Jul; 173(1):19-26. PubMed ID: 210765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.