These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38800362)

  • 1. Unveiling value patterns via deep reinforcement learning in heterogeneous data analytics.
    Wang Y; Wang J; Gao F; Song J
    Patterns (N Y); 2024 May; 5(5):100965. PubMed ID: 38800362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combination predicting methodology based on T-LSTNet_Markov for short-term wind power prediction.
    Wang Y; Wu Y; Xu H; Chen Z; Gao J; Xu Z; Li L
    Network; 2023; 34(3):151-173. PubMed ID: 37246622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization scheme of wind energy prediction based on artificial intelligence.
    Zhang Y; Li R; Zhang J
    Environ Sci Pollut Res Int; 2021 Aug; 28(29):39966-39981. PubMed ID: 33763837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Priori-guided and data-driven hybrid model for wind power forecasting.
    Huang Y; Liu GP; Hu W
    ISA Trans; 2023 Mar; 134():380-395. PubMed ID: 35989129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unveiling characteristics and determinants of China's wind power geographies towards low-carbon transition.
    Han M; Sun R; Feng P; Hua E
    J Environ Manage; 2023 Apr; 331():117215. PubMed ID: 36646038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EMD-based gray combined forecasting model - Application to long-term forecasting of wind power generation.
    Ran M; Huang J; Qian W; Zou T; Ji C
    Heliyon; 2023 Jul; 9(7):e18053. PubMed ID: 37496909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep-Learning Model for Influenza Prediction From Multisource Heterogeneous Data in a Megacity: Model Development and Evaluation.
    Yang L; Li G; Yang J; Zhang T; Du J; Liu T; Zhang X; Han X; Li W; Ma L; Feng L; Yang W
    J Med Internet Res; 2023 Feb; 25():e44238. PubMed ID: 36780207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Reinforcement Learning for Power Transmission Network Self-Healing Considering Wind Power.
    Sun R; Liu Y
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):6405-6415. PubMed ID: 34968180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Reinforcement Learning for the Detection of Abnormal Data in Smart Meters.
    Sun S; Liu C; Zhu Y; He H; Xiao S; Wen J
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel power-driven fractional accumulated grey model and its application in forecasting wind energy consumption of China.
    Zhang P; Ma X; She K
    PLoS One; 2019; 14(12):e0225362. PubMed ID: 31805165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint Beamforming, Power Allocation, and Splitting Control for SWIPT-Enabled IoT Networks with Deep Reinforcement Learning and Game Theory.
    Liu J; Lin CR; Hu YC; Donta PK
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants investigation and peak prediction of CO
    Wang W; Wang J
    Environ Sci Pollut Res Int; 2021 Oct; 28(39):55535-55553. PubMed ID: 34138431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multi-Stage Planning Method for Distribution Networks Based on ARIMA with Error Gradient Sampling for Source-Load Prediction.
    Yan S; Hu M
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PaCAR: COVID-19 Pandemic Control Decision Making via Large-Scale Agent-Based Modeling and Deep Reinforcement Learning.
    Guo X; Chen P; Liang S; Jiao Z; Li L; Yan J; Huang Y; Liu Y; Fan W
    Med Decis Making; 2022 Nov; 42(8):1064-1077. PubMed ID: 35775610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Intelligence in enhancing sustainable practices for infectious municipal waste classification.
    Pitakaso R; Srichok T; Khonjun S; Golinska-Dawson P; Gonwirat S; Nanthasamroeng N; Boonmee C; Jirasirilerd G; Luesak P
    Waste Manag; 2024 Jun; 183():87-100. PubMed ID: 38735094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Reinforcement Learning for Workload Prediction in Federated Cloud Environments.
    Ahamed Z; Khemakhem M; Eassa F; Alsolami F; Basuhail A; Jambi K
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ESG guidance and artificial intelligence support for power systems analytics in the energy industry.
    Li Q; Zou G; Zeng W; Gao J; He F; Zhang Y
    Sci Rep; 2024 May; 14(1):11347. PubMed ID: 38762582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renewable energy sources integration via machine learning modelling: A systematic literature review.
    Alazemi T; Darwish M; Radi M
    Heliyon; 2024 Feb; 10(4):e26088. PubMed ID: 38404865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive Analytics for Care and Management of Patients With Acute Diseases: Deep Learning-Based Method to Predict Crucial Complication Phenotypes.
    Sheng JQ; Hu PJ; Liu X; Huang TS; Chen YH
    J Med Internet Res; 2021 Feb; 23(2):e18372. PubMed ID: 33576744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Hybrid Stacked CNN and Residual Feedback GMDH-LSTM Deep Learning Model for Stroke Prediction Applied on Mobile AI Smart Hospital Platform.
    Elbagoury BM; Vladareanu L; Vlădăreanu V; Salem AB; Travediu AM; Roushdy MI
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.