BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38800474)

  • 1. Unveiling the molecular complexity of proliferative diabetic retinopathy through scRNA-seq, AlphaFold 2, and machine learning.
    Wang J; Sun H; Mou L; Lu Y; Wu Z; Pu Z; Yang MM
    Front Endocrinol (Lausanne); 2024; 15():1382896. PubMed ID: 38800474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The integrated transcriptome bioinformatics analysis identifies key genes and cellular components for proliferative diabetic retinopathy.
    Gao N; Hao S; Huang G; Hao W; Su L
    PLoS One; 2022; 17(11):e0277952. PubMed ID: 36409751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying gene expression programs in single-cell RNA-seq data using linear correlation explanation.
    Nussbaum YI; Hossain KSMT; Kaifi J; Warren WC; Shyu CR; Mitchem JB
    J Biomed Inform; 2024 Jun; 154():104644. PubMed ID: 38631462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the aberrantly methylated differentially expressed genes in proliferative diabetic retinopathy.
    Miao A; Lu J; Wang Y; Mao S; Cui Y; Pan J; Li L; Luo Y
    Exp Eye Res; 2020 Oct; 199():108141. PubMed ID: 32721427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond benchmarking and towards predictive models of dataset-specific single-cell RNA-seq pipeline performance.
    Fang C; Selega A; Campbell KR
    Genome Biol; 2024 Jun; 25(1):159. PubMed ID: 38886757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mining the proliferative diabetic retinopathy-associated genes and pathways by integrated bioinformatic analysis.
    Sun H; Cheng Y; Yan Z; Liu X; Zhang J
    Int Ophthalmol; 2020 Feb; 40(2):269-279. PubMed ID: 31953631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell transcriptome analysis of the Akimba mouse retina reveals cell-type-specific insights into the pathobiology of diabetic retinopathy.
    Van Hove I; De Groef L; Boeckx B; Modave E; Hu TT; Beets K; Etienne I; Van Bergen T; Lambrechts D; Moons L; Feyen JHM; Porcu M
    Diabetologia; 2020 Oct; 63(10):2235-2248. PubMed ID: 32734440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the use of QDE-SVM for gene feature selection and cell type classification from scRNA-seq data.
    Ng GYL; Tan SC; Ong CS
    PLoS One; 2023; 18(10):e0292961. PubMed ID: 37856458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the Immune Infiltration Landscape and M2 Macrophage-Related Biomarkers of Proliferative Diabetic Retinopathy.
    Meng Z; Chen Y; Wu W; Yan B; Meng Y; Liang Y; Yao X; Luo J
    Front Endocrinol (Lausanne); 2022; 13():841813. PubMed ID: 35692390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and comprehensive analysis of ferroptosis-related genes as potential biomarkers for the diagnosis and treatment of proliferative diabetic retinopathy by bioinformatics methods.
    Cao D; Wang C; Zhou L
    Exp Eye Res; 2023 Jul; 232():109513. PubMed ID: 37207868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of novel lysosome-related signatures and their potential target drugs based on bulk RNA-seq and scRNA-seq for diabetic foot ulcers.
    Tan L; Qu J; Wang J
    Hum Genomics; 2024 Jun; 18(1):62. PubMed ID: 38862997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer learning for clustering single-cell RNA-seq data crossing-species and batch, case on uterine fibroids.
    Wang YM; Sun Y; Wang B; Wu Z; He XY; Zhao Y
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 37991248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-Depth Molecular Characterization of Neovascular Membranes Suggests a Role for Hyalocyte-to-Myofibroblast Transdifferentiation in Proliferative Diabetic Retinopathy.
    Boneva SK; Wolf J; Hajdú RI; Prinz G; Salié H; Schlecht A; Killmer S; Laich Y; Faatz H; Lommatzsch A; Busch M; Bucher F; Stahl A; Böhringer D; Bengsch B; Schlunck G; Agostini H; Lange CAK
    Front Immunol; 2021; 12():757607. PubMed ID: 34795670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated machine learning-based classification of proliferative and non-proliferative diabetic retinopathy using optical coherence tomography angiography vascular density maps.
    Khalili Pour E; Rezaee K; Azimi H; Mirshahvalad SM; Jafari B; Fadakar K; Faghihi H; Mirshahi A; Ghassemi F; Ebrahimiadib N; Mirghorbani M; Bazvand F; Riazi-Esfahani H; Riazi Esfahani M
    Graefes Arch Clin Exp Ophthalmol; 2023 Feb; 261(2):391-399. PubMed ID: 36050474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data.
    Wu W; Liu Z; Ma X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33535230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of genes related to proliferative diabetic retinopathy through RWR algorithm based on protein-protein interaction network.
    Zhang J; Suo Y; Liu M; Xu X
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2369-2375. PubMed ID: 29237571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network-Based Structural Learning Nonnegative Matrix Factorization Algorithm for Clustering of scRNA-Seq Data.
    Wu W; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):566-575. PubMed ID: 35316190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.
    Srinivasan S; Leshchyk A; Johnson NT; Korkin D
    RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CTISL: a dynamic stacking multi-class classification approach for identifying cell types from single-cell RNA-seq data.
    Wang X; Chai Z; Li S; Liu Y; Li C; Jiang Y; Liu Q
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38317054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.