BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38800557)

  • 1. Precision genome editing offers hope for treatment of β-thalassemia and other genetic disorders.
    Abbas Z; Rahman A; Aslam B; Aftab S; Feng C; Baloch Z
    Mol Ther Nucleic Acids; 2024 Jun; 35(2):102204. PubMed ID: 38800557
    [No Abstract]   [Full Text] [Related]  

  • 2. Prime editing: A potential treatment option for β-thalassemia.
    Arif T; Farooq A; Ahmad FJ; Akhtar M; Choudhery MS
    Cell Biol Int; 2023 Apr; 47(4):699-713. PubMed ID: 36480796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision Editing as a Therapeutic Approach for β-Hemoglobinopathies.
    Paschoudi K; Yannaki E; Psatha N
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia.
    Zeng S; Lei S; Qu C; Wang Y; Teng S; Huang P
    Hum Genet; 2023 Dec; 142(12):1677-1703. PubMed ID: 37878144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined approaches for increasing fetal hemoglobin (HbF) and
    Finotti A; Gambari R
    Front Genome Ed; 2023; 5():1204536. PubMed ID: 37529398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Advances in gene therapy for β-thalassemia and hemophilia based on the CRISPR/Cas9 technology].
    Bao LW; Zhou YY; Zeng FY
    Yi Chuan; 2020 Oct; 42(10):949-964. PubMed ID: 33229321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in genome editing: the technology of choice for precise and efficient β-thalassemia treatment.
    Ali G; Tariq MA; Shahid K; Ahmad FJ; Akram J
    Gene Ther; 2021 Feb; 28(1-2):6-15. PubMed ID: 32355226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Therapy and Gene Editing for β-Thalassemia.
    Christakopoulos GE; Telange R; Yen J; Weiss MJ
    Hematol Oncol Clin North Am; 2023 Apr; 37(2):433-447. PubMed ID: 36907613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-Treatment of Erythroid Cells from β-Thalassemia Patients with CRISPR-Cas9-Based β
    Cosenza LC; Zuccato C; Zurlo M; Gambari R; Finotti A
    Genes (Basel); 2022 Sep; 13(10):. PubMed ID: 36292612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease.
    Khosravi MA; Abbasalipour M; Concordet JP; Berg JV; Zeinali S; Arashkia A; Azadmanesh K; Buch T; Karimipoor M
    Eur J Pharmacol; 2019 Jul; 854():398-405. PubMed ID: 31039344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient CRISPR-Cas9-based genome editing of β-globin gene on erythroid cells from homozygous β
    Cosenza LC; Gasparello J; Romanini N; Zurlo M; Zuccato C; Gambari R; Finotti A
    Mol Ther Methods Clin Dev; 2021 Jun; 21():507-523. PubMed ID: 33997100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of Fetal Hemoglobin by Introducing Natural Hereditary Persistence of Fetal Hemoglobin Mutations in the γ-Globin Gene Promoters for Genome Editing Therapies for β-Thalassemia.
    Lu D; Xu Z; Peng Z; Yang Y; Song B; Xiong Z; Ma Z; Guan H; Chen B; Nakamura Y; Zeng J; Liu N; Sun X; Chen D
    Front Genet; 2022; 13():881937. PubMed ID: 35656314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Regulation of γ-globin gene expression and its clinical applications].
    Ju JY; Zhao Q
    Yi Chuan; 2018 Jun; 40(6):429-444. PubMed ID: 29959116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Frontiers: Precise Editing of Allergen Genes Using CRISPR.
    Brackett NF; Pomés A; Chapman MD
    Front Allergy; 2021; 2():821107. PubMed ID: 35386981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Editing an α-globin enhancer in primary human hematopoietic stem cells as a treatment for β-thalassemia.
    Mettananda S; Fisher CA; Hay D; Badat M; Quek L; Clark K; Hublitz P; Downes D; Kerry J; Gosden M; Telenius J; Sloane-Stanley JA; Faustino P; Coelho A; Doondeea J; Usukhbayar B; Sopp P; Sharpe JA; Hughes JR; Vyas P; Gibbons RJ; Higgs DR
    Nat Commun; 2017 Sep; 8(1):424. PubMed ID: 28871148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design Principles of a Novel Construct for HBB Gene-Editing and Investigation of Its Gene-Targeting Efficiency in HEK293 Cells.
    Lotfi M; Ashouri A; Mojarrad M; Mozaffari-Jovin S; Abbaszadegan MR
    Mol Biotechnol; 2024 Mar; 66(3):517-530. PubMed ID: 37266832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Context base editing for splice correction of IVSI-110 β-thalassemia.
    Naiisseh B; Papasavva PL; Papaioannou NY; Tomazou M; Koniali L; Felekis X; Constantinou CG; Sitarou M; Christou S; Kleanthous M; Lederer CW; Patsali P
    Mol Ther Nucleic Acids; 2024 Jun; 35(2):102183. PubMed ID: 38706633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of capillary electrophoregram among heterozygous Hb Hope, Hb Hope/α-thalassemia-1 SEA type deletion and Hb Hope/β(0)-thalassemia.
    Pornprasert S; Panyasai S; Kongthai K
    Clin Chem Lab Med; 2012 Mar; 50(9):1625-9. PubMed ID: 22962223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction of Beta-Thalassemia IVS-II-654 Mutation in a Mouse Model Using Prime Editing.
    Zhang H; Sun R; Fei J; Chen H; Lu D
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific genome editing in treatment of inherited diseases: possibility, progress, and perspectives.
    Huang C; Li Q; Li J
    Med Rev (2021); 2022 Oct; 2(5):471-500. PubMed ID: 37724161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.