These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 38800634)

  • 1. Computational modeling for deciphering tissue microenvironment heterogeneity from spatially resolved transcriptomics.
    Zhang C; Wang L; Shi Q
    Comput Struct Biotechnol J; 2024 Dec; 23():2109-2115. PubMed ID: 38800634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-view graph contrastive learning framework for deciphering spatially resolved transcriptomics data.
    Zhang L; Liang S; Wan L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38801701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering.
    Peng L; He X; Peng X; Li Z; Zhang L
    Comput Biol Med; 2023 Nov; 166():107440. PubMed ID: 37738898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning.
    Tu JJ; Li HS; Yan H; Zhang XF
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36610709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network.
    Huo Y; Guo Y; Wang J; Xue H; Feng Y; Chen W; Li X
    J Genet Genomics; 2023 Sep; 50(9):720-733. PubMed ID: 37356752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning.
    Coleman K; Hu J; Schroeder A; Lee EB; Li M
    Commun Biol; 2023 Apr; 6(1):378. PubMed ID: 37029267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting mammalian reproduction with spatial transcriptomics.
    Zhang X; Cao Q; Rajachandran S; Grow EJ; Evans M; Chen H
    Hum Reprod Update; 2023 Nov; 29(6):794-810. PubMed ID: 37353907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurately deciphering spatial domains for spatially resolved transcriptomics with stCluster.
    Wang T; Shu H; Hu J; Wang Y; Chen J; Peng J; Shang X
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38975895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning applications in single-cell genomics and transcriptomics data analysis.
    Erfanian N; Heydari AA; Feriz AM; Iañez P; Derakhshani A; Ghasemigol M; Farahpour M; Razavi SM; Nasseri S; Safarpour H; Sahebkar A
    Biomed Pharmacother; 2023 Sep; 165():115077. PubMed ID: 37393865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncovering an Organ's Molecular Architecture at Single-Cell Resolution by Spatially Resolved Transcriptomics.
    Liao J; Lu X; Shao X; Zhu L; Fan X
    Trends Biotechnol; 2021 Jan; 39(1):43-58. PubMed ID: 32505359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deconvolution algorithms for inference of the cell-type composition of the spatial transcriptome.
    Zhang Y; Lin X; Yao Z; Sun D; Lin X; Wang X; Yang C; Song J
    Comput Struct Biotechnol J; 2023; 21():176-184. PubMed ID: 36544473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial transcriptomics: recent developments and insights in respiratory research.
    Wang WJ; Chu LX; He LY; Zhang MJ; Dang KT; Gao C; Ge QY; Wang ZG; Zhao XW
    Mil Med Res; 2023 Aug; 10(1):38. PubMed ID: 37592342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational exploration of cellular communication in skin from emerging single-cell and spatial transcriptomic data.
    Jin S; Ramos R
    Biochem Soc Trans; 2022 Feb; 50(1):297-308. PubMed ID: 35191953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Placing RNA in context and space - methods for spatially resolved transcriptomics.
    Strell C; Hilscher MM; Laxman N; Svedlund J; Wu C; Yokota C; Nilsson M
    FEBS J; 2019 Apr; 286(8):1468-1481. PubMed ID: 29542254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially aware self-representation learning for tissue structure characterization and spatial functional genes identification.
    Zhang C; Li X; Huang W; Wang L; Shi Q
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37253698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially Resolved Single-Cell Omics: Methods, Challenges, and Future Perspectives.
    Dezem FS; Morosini NS; Arjumand W; DuBose H; Plummer J
    Annu Rev Biomed Data Sci; 2024 May; ():. PubMed ID: 38768396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Navigating the landscapes of spatial transcriptomics: How computational methods guide the way.
    Li R; Chen X; Yang X
    Wiley Interdiscip Rev RNA; 2024; 15(2):e1839. PubMed ID: 38527900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Define and visualize pathological architectures of human tissues from spatially resolved transcriptomics using deep learning.
    Chang Y; He F; Wang J; Chen S; Li J; Liu J; Yu Y; Su L; Ma A; Allen C; Lin Y; Sun S; Liu B; Javier Otero J; Chung D; Fu H; Li Z; Xu D; Ma Q
    Comput Struct Biotechnol J; 2022; 20():4600-4617. PubMed ID: 36090815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.