These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 38800708)
1. Capillary-based, multifunctional manipulation of particles and fluids Pei Z; Tian Z; Yang S; Shen L; Hao N; Naquin TD; Li T; Sun L; Rong W; Huang TJ J Phys D Appl Phys; 2024 Aug; 57(30):. PubMed ID: 38800708 [TBL] [Abstract][Full Text] [Related]
2. Acoustofluidic patterning in glass capillaries using travelling acoustic waves based on thin film flexible platform. Wang Q; Maramizonouz S; Stringer Martin M; Zhang J; Ong HL; Liu Q; Yang X; Rahmati M; Torun H; Ng WP; Wu Q; Binns R; Fu Y Ultrasonics; 2024 Jan; 136():107149. PubMed ID: 37703751 [TBL] [Abstract][Full Text] [Related]
3. Acoustofluidic Diversity Achieved by Multiple Modes of Acoustic Waves Generated on Piezoelectric-Film-Coated Aluminum Sheets. Wang Y; Li X; Meng H; Tao R; Qian J; Fu C; Luo J; Xie J; Fu Y ACS Appl Mater Interfaces; 2024 Aug; 16(34):45119-45130. PubMed ID: 39143893 [TBL] [Abstract][Full Text] [Related]
4. Acoustofluidic black holes for multifunctional in-droplet particle manipulation. Liu P; Tian Z; Yang K; Naquin TD; Hao N; Huang H; Chen J; Ma Q; Bachman H; Zhang P; Xu X; Hu J; Huang TJ Sci Adv; 2022 Apr; 8(13):eabm2592. PubMed ID: 35363512 [TBL] [Abstract][Full Text] [Related]
5. Development and characterisation of acoustofluidic devices using detachable electrodes made from PCB. Mikhaylov R; Wu F; Wang H; Clayton A; Sun C; Xie Z; Liang D; Dong Y; Yuan F; Moschou D; Wu Z; Shen MH; Yang J; Fu Y; Yang Z; Burton C; Errington RJ; Wiltshire M; Yang X Lab Chip; 2020 May; 20(10):1807-1814. PubMed ID: 32319460 [TBL] [Abstract][Full Text] [Related]
6. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Destgeer G; Sung HJ Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538 [TBL] [Abstract][Full Text] [Related]
7. A two-chip acoustofluidic particle manipulation platform with a detachable and reusable surface acoustic wave device. Qian J; Ren J; Liu Y; Lam RHW; Lee JE Analyst; 2020 Nov; 145(23):7752-7758. PubMed ID: 33001065 [TBL] [Abstract][Full Text] [Related]
8. Acoustofluidic precise manipulation: Recent advances in applications for micro/nano bioparticles. Li W; Yao Z; Ma T; Ye Z; He K; Wang L; Wang H; Fu Y; Xu X Adv Colloid Interface Sci; 2024 Oct; 332():103276. PubMed ID: 39146580 [TBL] [Abstract][Full Text] [Related]
9. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner. Khan MS; Sahin MA; Destgeer G; Park J Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893 [TBL] [Abstract][Full Text] [Related]
10. Continuous Particle Aggregation and Separation in Acoustofluidic Microchannels Driven by Standing Lamb Waves. Hsu JC; Chang CY Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557473 [TBL] [Abstract][Full Text] [Related]
11. Microfabricated acoustofluidic membrane acoustic waveguide actuator for highly localized in-droplet dynamic particle manipulation. Vachon P; Merugu S; Sharma J; Lal A; Ng EJ; Koh Y; Lee JE; Lee C Lab Chip; 2023 Mar; 23(7):1865-1878. PubMed ID: 36852544 [TBL] [Abstract][Full Text] [Related]
12. Femtosecond Laser Micromachining of the Mask for Acoustofluidic Device Preparation. Wang Y; Qian J ACS Omega; 2023 Feb; 8(8):7838-7844. PubMed ID: 36873004 [TBL] [Abstract][Full Text] [Related]
13. Enriching Nanoparticles via Acoustofluidics. Mao Z; Li P; Wu M; Bachman H; Mesyngier N; Guo X; Liu S; Costanzo F; Huang TJ ACS Nano; 2017 Jan; 11(1):603-612. PubMed ID: 28068078 [TBL] [Abstract][Full Text] [Related]
14. Flexible acoustic lens-based surface acoustic wave device for manipulation and directional transport of micro-particles. Huang J; Ren X; Zhou Q; Zhou J; Xu Z Ultrasonics; 2023 Feb; 128():106865. PubMed ID: 36260963 [TBL] [Abstract][Full Text] [Related]
15. Cavity-agnostic acoustofluidic manipulations enabled by guided flexural waves on a membrane acoustic waveguide actuator. Vachon P; Merugu S; Sharma J; Lal A; Ng EJ; Koh Y; Lee JE; Lee C Microsyst Nanoeng; 2024; 10():33. PubMed ID: 38463549 [TBL] [Abstract][Full Text] [Related]
16. Radiation dominated acoustophoresis driven by surface acoustic waves. Guo J; Kang Y; Ai Y J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191 [TBL] [Abstract][Full Text] [Related]
17. Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments. Fu YQ; Pang HF; Torun H; Tao R; McHale G; Reboud J; Tao K; Zhou J; Luo J; Gibson D; Luo J; Hu P Lab Chip; 2021 Jan; 21(2):254-271. PubMed ID: 33337457 [TBL] [Abstract][Full Text] [Related]
18. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave. Ma Z; Collins DJ; Ai Y Anal Chem; 2016 May; 88(10):5316-23. PubMed ID: 27086552 [TBL] [Abstract][Full Text] [Related]
19. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. Destgeer G; Cho H; Ha BH; Jung JH; Park J; Sung HJ Lab Chip; 2016 Feb; 16(4):660-7. PubMed ID: 26755271 [TBL] [Abstract][Full Text] [Related]