These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 38800845)
1. Similarities and Differences in Ligand Binding to Protein and RNA Targets: The Case of Riboflavin. Bosio S; Bernetti M; Rocchia W; Masetti M J Chem Inf Model; 2024 Jun; 64(11):4570-4586. PubMed ID: 38800845 [TBL] [Abstract][Full Text] [Related]
2. Structural insights into the interactions of flavin mononucleotide (FMN) and riboflavin with FMN riboswitch: a molecular dynamics simulation study. Wakchaure PD; Jana K; Ganguly B J Biomol Struct Dyn; 2020 Aug; 38(13):3856-3866. PubMed ID: 31498025 [TBL] [Abstract][Full Text] [Related]
3. Binding site preorganization and ligand discrimination in the purine riboswitch. Sund J; Lind C; Åqvist J J Phys Chem B; 2015 Jan; 119(3):773-82. PubMed ID: 25014157 [TBL] [Abstract][Full Text] [Related]
4. Validation and Development of an Escherichia coli Riboflavin Pathway Phenotypic Screen Hit as a Small-Molecule Ligand of the Flavin Mononucleotide Riboswitch. Balibar CJ; Villafania A; Barbieri CM; Murgolo N; Roemer T; Wang H; Howe JA Methods Mol Biol; 2018; 1787():19-40. PubMed ID: 29736707 [TBL] [Abstract][Full Text] [Related]
5. Dual-Targeting Small-Molecule Inhibitors of the Staphylococcus aureus FMN Riboswitch Disrupt Riboflavin Homeostasis in an Infectious Setting. Wang H; Mann PA; Xiao L; Gill C; Galgoci AM; Howe JA; Villafania A; Barbieri CM; Malinverni JC; Sher X; Mayhood T; McCurry MD; Murgolo N; Flattery A; Mack M; Roemer T Cell Chem Biol; 2017 May; 24(5):576-588.e6. PubMed ID: 28434876 [TBL] [Abstract][Full Text] [Related]
6. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations. Hu G; Ma A; Wang J J Chem Inf Model; 2017 Apr; 57(4):918-928. PubMed ID: 28345904 [TBL] [Abstract][Full Text] [Related]
7. Rare variants of the FMN riboswitch class in Atilho RM; Perkins KR; Breaker RR RNA; 2019 Jan; 25(1):23-34. PubMed ID: 30287481 [TBL] [Abstract][Full Text] [Related]
8. Bacterial flavin mononucleotide riboswitches as targets for flavin analogs. Pedrolli DB; Mack M Methods Mol Biol; 2014; 1103():165-76. PubMed ID: 24318894 [TBL] [Abstract][Full Text] [Related]
9. Molecular sensing by the aptamer domain of the FMN riboswitch: a general model for ligand binding by conformational selection. Vicens Q; Mondragón E; Batey RT Nucleic Acids Res; 2011 Oct; 39(19):8586-98. PubMed ID: 21745821 [TBL] [Abstract][Full Text] [Related]
10. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis. Pedrolli D; Langer S; Hobl B; Schwarz J; Hashimoto M; Mack M FEBS J; 2015 Aug; 282(16):3230-42. PubMed ID: 25661987 [TBL] [Abstract][Full Text] [Related]
11. Direct evolution of riboflavin kinase significantly enhance flavin mononucleotide synthesis by design and optimization of flavin mononucleotide riboswitch. Du Y; Zhang X; Zhang H; Zhu R; Zhao Z; Han J; Zhang D; Zhang X; Zhang X; Pan X; You J; Rao Z Bioresour Technol; 2023 Aug; 381():128774. PubMed ID: 36822556 [TBL] [Abstract][Full Text] [Related]
12. Affinity-Based Profiling of the Flavin Mononucleotide Riboswitch. Crielaard S; Maassen R; Vosman T; Rempkens I; Velema WA J Am Chem Soc; 2022 Jun; 144(23):10462-10470. PubMed ID: 35666649 [TBL] [Abstract][Full Text] [Related]
13. Ligand Binding Mechanism and Its Relationship with Conformational Changes in Adenine Riboswitch. Hu G; Li H; Xu S; Wang J Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32168940 [TBL] [Abstract][Full Text] [Related]
14. Quantum Mechanics Helps Uncover Atypical Recognition Features in the Flavin Mononucleotide Riboswitch. Deb I; Wong H; Tacubao C; Frank AT J Phys Chem B; 2021 Aug; 125(30):8342-8350. PubMed ID: 34310879 [TBL] [Abstract][Full Text] [Related]
15. Molecular dynamics simulation of the binding process of ligands to the add adenine riboswitch aptamer. Bao L; Wang J; Xiao Y Phys Rev E; 2019 Aug; 100(2-1):022412. PubMed ID: 31574664 [TBL] [Abstract][Full Text] [Related]
16. Preparation of modified long-mer RNAs and analysis of FMN binding to the ypaA aptamer from B. subtilis. Frommer J; Hieronymus R; Selvi Arunachalam T; Heeren S; Jenckel M; Strahl A; Appel B; Müller S RNA Biol; 2014; 11(5):609-23. PubMed ID: 24755604 [TBL] [Abstract][Full Text] [Related]
17. Guanidine-II aptamer conformations and ligand binding modes through the lens of molecular simulation. Steuer J; Kukharenko O; Riedmiller K; Hartig JS; Peter C Nucleic Acids Res; 2021 Aug; 49(14):7954-7965. PubMed ID: 34233001 [TBL] [Abstract][Full Text] [Related]
18. Using reweighted pulling simulations to characterize conformational changes in riboswitches. Di Palma F; Colizzi F; Bussi G Methods Enzymol; 2015; 553():139-62. PubMed ID: 25726464 [TBL] [Abstract][Full Text] [Related]
19. The physiological role of riboflavin transporter and involvement of FMN-riboswitch in its gene expression in Corynebacterium glutamicum. Takemoto N; Tanaka Y; Inui M; Yukawa H Appl Microbiol Biotechnol; 2014 May; 98(9):4159-68. PubMed ID: 24531272 [TBL] [Abstract][Full Text] [Related]
20. Structural Studies of the 3',3'-cGAMP Riboswitch Induced by Cognate and Noncognate Ligands Using Molecular Dynamics Simulation. Li C; Zhao X; Zhu X; Xie P; Chen G Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30423927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]