These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 38800993)
1. Effect of high blood flow on heat distribution and ablation zone during microwave ablation-numerical approach. Boregowda G; Mariappan P Int J Numer Method Biomed Eng; 2024 Aug; 40(8):e3835. PubMed ID: 38800993 [TBL] [Abstract][Full Text] [Related]
2. 3D modeling of vector/edge finite element method for multi-ablation technique for large tumor-computational approach. Boregowda G; Mariappan P PLoS One; 2023; 18(7):e0289262. PubMed ID: 37506084 [TBL] [Abstract][Full Text] [Related]
3. A vector finite element approach to temperature dependent parameters of microwave ablation for liver cancer. Gangadhara B; Mariappan P Int J Numer Method Biomed Eng; 2023 Jan; 39(1):e3661. PubMed ID: 36385734 [TBL] [Abstract][Full Text] [Related]
4. Influences of blood flow parameters on temperature distribution during liver tumor microwave ablation. Wang J; Wu S; Wu Z; Gao H; Huang S Front Biosci (Landmark Ed); 2021 Sep; 26(9):504-516. PubMed ID: 34590463 [No Abstract] [Full Text] [Related]
5. Predictors of thrombosis in hepatic vasculature during microwave tumor ablation of an in vivo porcine model. Chiang J; Willey BJ; Del Rio AM; Hinshaw JL; Lee FT; Brace CL J Vasc Interv Radiol; 2014 Dec; 25(12):1965-1971.e2. PubMed ID: 25255704 [TBL] [Abstract][Full Text] [Related]
6. Microwave Ablation Using Four-Tine Antenna: Effects of Blood Flow Velocity, Vessel Location, and Total Displacement on Porous Hepatic Cancer Tissue. Chaichanyut M; Tungjitkusolmun S Comput Math Methods Med; 2016; 2016():4846738. PubMed ID: 27642364 [TBL] [Abstract][Full Text] [Related]
8. Numerical study on the effect of bifurcation vessel parameters on microwave ablation of lung tissue. Tian Z; Cheng Y; Hu H; Mai X; Nan Q Electromagn Biol Med; 2022 Jul; 41(3):272-280. PubMed ID: 35438050 [No Abstract] [Full Text] [Related]
9. Physical modeling of microwave ablation zone clinical margin variance. Deshazer G; Merck D; Hagmann M; Dupuy DE; Prakash P Med Phys; 2016 Apr; 43(4):1764. PubMed ID: 27036574 [TBL] [Abstract][Full Text] [Related]
10. Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes-A computational approach. Tehrani MHH; Soltani M; Kashkooli FM; Raahemifar K PLoS One; 2020; 15(6):e0233219. PubMed ID: 32542034 [TBL] [Abstract][Full Text] [Related]
11. Optimization of dual slot antenna using floating metallic sleeve for microwave ablation. Ibitoye ZA; Nwoye EO; Aweda MA; Oremosu AA; Annunobi CC; Akanmu ON Med Eng Phys; 2015 Apr; 37(4):384-91. PubMed ID: 25686672 [TBL] [Abstract][Full Text] [Related]
12. Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model. Pillai K; Akhter J; Chua TC; Shehata M; Alzahrani N; Al-Alem I; Morris DL Medicine (Baltimore); 2015 Mar; 94(9):e580. PubMed ID: 25738477 [TBL] [Abstract][Full Text] [Related]
13. Numerical study of the induction of intratumoral apoptosis under microwave ablation by changing slot length of microwave coaxial antenna. Kim H; Kim D Med Biol Eng Comput; 2024 Jul; 62(7):2177-2187. PubMed ID: 38488930 [TBL] [Abstract][Full Text] [Related]
14. Sensitivity of microwave ablation models to tissue biophysical properties: A first step toward probabilistic modeling and treatment planning. Sebek J; Albin N; Bortel R; Natarajan B; Prakash P Med Phys; 2016 May; 43(5):2649. PubMed ID: 27147374 [TBL] [Abstract][Full Text] [Related]
15. Numerical study on thermal field of microwave ablation with water-cooled antenna. Lu Y; Nan Q; Li L; Liu Y Int J Hyperthermia; 2009 Mar; 25(2):108-15. PubMed ID: 19337911 [TBL] [Abstract][Full Text] [Related]
16. Effect of variable heat transfer coefficient on tissue temperature next to a large vessel during radiofrequency tumor ablation. dos Santos I; Haemmerich D; Pinheiro Cda S; da Rocha AF Biomed Eng Online; 2008 Jul; 7():21. PubMed ID: 18620566 [TBL] [Abstract][Full Text] [Related]
17. Mathematical modeling of microwave liver ablation with a variable-porosity medium approach. Tucci C; Trujillo M; Berjano E; Iasiello M; Andreozzi A; Vanoli GP Comput Methods Programs Biomed; 2022 Feb; 214():106569. PubMed ID: 34906785 [TBL] [Abstract][Full Text] [Related]
18. Theoretical analysis of the heat convection coefficient in large vessels and the significance for thermal ablative therapies. Consiglieri L; dos Santos I; Haemmerich D Phys Med Biol; 2003 Dec; 48(24):4125-34. PubMed ID: 14727756 [TBL] [Abstract][Full Text] [Related]
19. Temperature simulation of microwave ablation based on improved specific absorption rate method compared to phantom measurements. Gao H; Wu S; Wang X; Hu R; Zhou Z; Sun X Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):9-17. PubMed ID: 28922946 [TBL] [Abstract][Full Text] [Related]
20. Numerical study of the effect of blood vessel on the microwave ablation shape. Nie X; Nan Q; Guo X; Tian Z Biomed Mater Eng; 2015; 26 Suppl 1():S265-70. PubMed ID: 26406011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]