These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38801111)

  • 21. Citrate-Based Polyester Elastomer with Artificially Regulatable Degradation Rate on Demand.
    Wan L; Lu L; Liang X; Liu Z; Huang X; Du R; Luo Q; Xu Q; Zhang Q; Jia X
    Biomacromolecules; 2023 Sep; 24(9):4123-4137. PubMed ID: 37584644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Citric-acid-derived photo-cross-linked biodegradable elastomers.
    Gyawali D; Tran RT; Guleserian KJ; Tang L; Yang J
    J Biomater Sci Polym Ed; 2010; 21(13):1761-82. PubMed ID: 20557687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Critical Review of Biodegradable and Bioactive Polymer Composites for Bone Tissue Engineering and Drug Delivery Applications.
    Sharma S; Sudhakara P; Singh J; Ilyas RA; Asyraf MRM; Razman MR
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451161
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications.
    Bello AB; Kim D; Kim D; Park H; Lee SH
    Tissue Eng Part B Rev; 2020 Apr; 26(2):164-180. PubMed ID: 31910095
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biological Activity of Poly(1,3-propanediol citrate) Films and Nonwovens: Mechanical, Thermal, Antimicrobial, and Cytotoxicity Studies.
    Bandzerewicz A; Wierzchowski K; Mierzejewska J; Denis P; Gołofit T; Szymczyk-Ziółkowska P; Pilarek M; Gadomska-Gajadhur A
    Macromol Rapid Commun; 2024 Jan; 45(2):e2300452. PubMed ID: 37838916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of Citrate-based Dual-Imaging Enabled Biodegradable Electroactive Polymers.
    Shan D; Kothapalli SR; Ravnic DJ; Gerhard E; Kim JP; Guo J; Ma C; Guo J; Gui L; Sun L; Lu D; Yang J
    Adv Funct Mater; 2018 Aug; 28(34):. PubMed ID: 31588204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering Citric Acid-Based Porous Scaffolds for Bone Regeneration.
    Masehi-Lano JJ; Chung EJ
    Methods Mol Biol; 2018; 1758():1-10. PubMed ID: 29679318
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Citrate-based Biodegradable Injectable hydrogel Composites for Orthopedic Applications.
    Gyawali D; Nair P; Kim HK; Yang J
    Biomater Sci; 2013 Jan; 1(1):52-64. PubMed ID: 23977427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biodegradable Materials for Bone Repair and Tissue Engineering Applications.
    Sheikh Z; Najeeb S; Khurshid Z; Verma V; Rashid H; Glogauer M
    Materials (Basel); 2015 Aug; 8(9):5744-5794. PubMed ID: 28793533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A State-of-the-Art of Functional Scaffolds for 3D Nervous Tissue Regeneration.
    Tupone MG; d'Angelo M; Castelli V; Catanesi M; Benedetti E; Cimini A
    Front Bioeng Biotechnol; 2021; 9():639765. PubMed ID: 33816451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomaterials and Regenerative Medicine in Urology.
    Davis NF; Cunnane EM; Quinlan MR; Mulvihill JJ; Lawrentschuk N; Bolton DM; Walsh MT
    Adv Exp Med Biol; 2018; 1107():189-198. PubMed ID: 29340876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioactive Poly(octanediol-citrate-polyglycol) Accelerates Skin Regeneration through M2 Polarization Immunomodulating and Early Angiogenesis.
    Xie C; Luo M; Chen M; Wang M; Qu X; Lei B
    Adv Healthc Mater; 2022 May; 11(10):e2101931. PubMed ID: 35108457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Citrate Crosslinked Poly(Glycerol Sebacate) with Tunable Elastomeric Properties.
    Risley BB; Ding X; Chen Y; Miller PG; Wang Y
    Macromol Biosci; 2021 Feb; 21(2):e2000301. PubMed ID: 33205616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of Biodegradable Osteopromotive Citrate-Based Bone Putty.
    Tan X; Gerhard E; Wang Y; Tran RT; Xu H; Yan S; Rizk EB; Armstrong AD; Zhou Y; Du J; Bai X; Yang J
    Small; 2022 Sep; 18(36):e2203003. PubMed ID: 35717669
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neutrophils in Biomaterial-Guided Tissue Regeneration: Matrix Reprogramming for Angiogenesis.
    Fetz AE; Radic MZ; Bowlin GL
    Tissue Eng Part B Rev; 2021 Apr; 27(2):95-106. PubMed ID: 32299302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A citric acid-based hydroxyapatite composite for orthopedic implants.
    Qiu H; Yang J; Kodali P; Koh J; Ameer GA
    Biomaterials; 2006 Dec; 27(34):5845-54. PubMed ID: 16919720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration.
    Allo BA; Costa DO; Dixon SJ; Mequanint K; Rizkalla AS
    J Funct Biomater; 2012 Jun; 3(2):432-63. PubMed ID: 24955542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Mesenchymal stem cells and their interaction with biomaterials: potential applications in tissue engineering].
    Schneider RK; Knüchel R; Neuss S
    Pathologe; 2011 Nov; 32 Suppl 2():296-303. PubMed ID: 21826499
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Orthopaedic applications for PLA-PGA biodegradable polymers.
    Athanasiou KA; Agrawal CM; Barber FA; Burkhart SS
    Arthroscopy; 1998 Oct; 14(7):726-37. PubMed ID: 9788368
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polyphosphazene polymers: The next generation of biomaterials for regenerative engineering and therapeutic drug delivery.
    Ogueri KS; Ogueri KS; Allcock HR; Laurencin CT
    J Vac Sci Technol B Nanotechnol Microelectron; 2020 May; 38(3):030801. PubMed ID: 32309041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.