These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 38801111)

  • 41. The application of polyhydroxyalkanoates as tissue engineering materials.
    Chen GQ; Wu Q
    Biomaterials; 2005 Nov; 26(33):6565-78. PubMed ID: 15946738
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immunomodulatory Properties: The Accelerant of Hydroxyapatite-Based Materials for Bone Regeneration.
    Shang L; Shao J; Ge S
    Tissue Eng Part C Methods; 2022 Aug; 28(8):377-392. PubMed ID: 35196904
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface modification of copolymerized films from three-armed biodegradable macromers - An analytical platform for modified tissue engineering scaffolds.
    Müller BM; Loth R; Hoffmeister PG; Zühl F; Kalbitzer L; Hacker MC; Schulz-Siegmund M
    Acta Biomater; 2017 Mar; 51():148-160. PubMed ID: 28069495
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Citrate Crosslinked Poly(Glycerol Sebacate) with Tunable Elastomeric Properties.
    Risley BB; Ding X; Chen Y; Miller PG; Wang Y
    Macromol Biosci; 2021 Feb; 21(2):e2000301. PubMed ID: 33205616
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tunable biomaterials from synthetic, sequence-controlled polymers.
    Austin MJ; Rosales AM
    Biomater Sci; 2019 Jan; 7(2):490-505. PubMed ID: 30628589
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biodegradable polyphosphazene biomaterials for tissue engineering and delivery of therapeutics.
    Baillargeon AL; Mequanint K
    Biomed Res Int; 2014; 2014():761373. PubMed ID: 24883323
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Agarose-based biomaterials for tissue engineering.
    Zarrintaj P; Manouchehri S; Ahmadi Z; Saeb MR; Urbanska AM; Kaplan DL; Mozafari M
    Carbohydr Polym; 2018 May; 187():66-84. PubMed ID: 29486846
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis and characterization of poly(1,2-propanediol-co-1,8-octanediol-co-citrate) biodegradable elastomers for tissue engineering.
    Li J; Zheng W; Pan P; Sun X; Zhang Y
    Biomed Mater Eng; 2014; 24(1):619-24. PubMed ID: 24211946
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Elastomeric biocomposite of silver-containing mesoporous bioactive glass and poly(1,8-octanediol citrate): Physiochemistry and in vitro antibacterial capacity in tissue engineering applications.
    Pourshahrestani S; Zeimaran E; Kadri NA; Gargiulo N; Jindal HM; Hasikin K; Naveen SV; Sekaran SD; Kamarul T
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1022-1033. PubMed ID: 30812986
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biofunctionalized peptide nanofiber-based composite scaffolds for bone regeneration.
    He B; Zhao J; Ou Y; Jiang D
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():728-738. PubMed ID: 29853144
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration.
    Subramanian A; Krishnan UM; Sethuraman S
    J Biomed Sci; 2009 Nov; 16(1):108. PubMed ID: 19939265
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanical, permeability, and degradation properties of 3D designed poly(1,8 octanediol-co-citrate) scaffolds for soft tissue engineering.
    Jeong CG; Hollister SJ
    J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):141-9. PubMed ID: 20091910
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Advancement of Biomaterials in Regulating Stem Cell Fate.
    Hiew VV; Simat SFB; Teoh PL
    Stem Cell Rev Rep; 2018 Feb; 14(1):43-57. PubMed ID: 28884292
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Designing Smart Biomaterials for Tissue Engineering.
    Khan F; Tanaka M
    Int J Mol Sci; 2017 Dec; 19(1):. PubMed ID: 29267207
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Mesenchymal stem cells and their interaction with biomaterials: potential applications in tissue engineering].
    Schneider RK; Knüchel R; Neuss S
    Pathologe; 2011 Nov; 32 Suppl 2():296-303. PubMed ID: 21826499
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Current development of biodegradable polymeric materials for biomedical applications.
    Song R; Murphy M; Li C; Ting K; Soo C; Zheng Z
    Drug Des Devel Ther; 2018; 12():3117-3145. PubMed ID: 30288019
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biodegradable Shape Memory Polymers in Medicine.
    Peterson GI; Dobrynin AV; Becker ML
    Adv Healthc Mater; 2017 Nov; 6(21):. PubMed ID: 28941154
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chitosan-coated hydroxyapatite and drug-loaded polytrimethylene carbonate/polylactic acid scaffold for enhancing bone regeneration.
    He J; Hu X; Cao J; Zhang Y; Xiao J; Peng L; Chen D; Xiong C; Zhang L
    Carbohydr Polym; 2021 Feb; 253():117198. PubMed ID: 33278972
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis and characterization of a biodegradable elastomer featuring a dual crosslinking mechanism.
    Tran RT; Thevenot P; Gyawali D; Chiao JC; Tang L; Yang J
    Soft Matter; 2010 Jan; 6(11):2449-2461. PubMed ID: 22162975
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Smart biomaterials for tissue engineering of cartilage.
    Stoop R
    Injury; 2008 Apr; 39 Suppl 1():S77-87. PubMed ID: 18313475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.