BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38801273)

  • 1. Motor Imagery Performance through Embodied Digital Twins in a Virtual Reality-Enabled Brain-Computer Interface Environment.
    Lakshminarayanan K; Shah R; Ramu V; Madathil D; Yao Y; Wang I; Brahmi B; Rahman MH
    J Vis Exp; 2024 May; (207):. PubMed ID: 38801273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.
    Vourvopoulos A; Bermúdez I Badia S
    J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving performance in motor imagery BCI-based control applications via virtually embodied feedback.
    Choi JW; Huh S; Jo S
    Comput Biol Med; 2020 Dec; 127():104079. PubMed ID: 33126130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multi-modal modified feedback self-paced BCI to control the gait of an avatar.
    Alchalabi B; Faubert J; Labbé DR
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33711832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining brain-computer interface and virtual reality for rehabilitation in neurological diseases: A narrative review.
    Wen D; Fan Y; Hsu SH; Xu J; Zhou Y; Tao J; Lan X; Li F
    Ann Phys Rehabil Med; 2021 Jan; 64(1):101404. PubMed ID: 32561504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Navigation in Google Street View
    Yang L; Van Hulle MM
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a hybrid brain computer interface and virtual reality system to monitor and promote cortical reorganization through motor activity and motor imagery training.
    Bermúdez i Badia S; García Morgade A; Samaha H; Verschure PF
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):174-81. PubMed ID: 23204287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agency and responsibility over virtual movements controlled through different paradigms of brain-computer interface.
    Nierula B; Spanlang B; Martini M; Borrell M; Nikulin VV; Sanchez-Vives MV
    J Physiol; 2021 May; 599(9):2419-2434. PubMed ID: 31647122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embodiment Is Related to Better Performance on a Brain-Computer Interface in Immersive Virtual Reality: A Pilot Study.
    Juliano JM; Spicer RP; Vourvopoulos A; Lefebvre S; Jann K; Ard T; Santarnecchi E; Krum DM; Liew SL
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Systematic Review of Virtual Reality and Robot Therapy as Recent Rehabilitation Technologies Using EEG-Brain-Computer Interface Based on Movement-Related Cortical Potentials.
    Said RR; Heyat MBB; Song K; Tian C; Wu Z
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shared mechanisms underlie mental imagery and motor planning.
    Bennet R; Reiner M
    Sci Rep; 2022 Feb; 12(1):2947. PubMed ID: 35194088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Online performance evaluation of motor imagery BCI with augmented-reality virtual hand feedback.
    Chin ZY; Ang KK; Wang C; Guan C
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3341-4. PubMed ID: 21097231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual reality and motor imagery for early post-stroke rehabilitation.
    Choy CS; Fang Q; Neville K; Ding B; Kumar A; Mahmoud SS; Gu X; Fu J; Jelfs B
    Biomed Eng Online; 2023 Jul; 22(1):66. PubMed ID: 37407988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immersive VR for upper-extremity rehabilitation in patients with neurological disorders: a scoping review.
    Ceradini M; Losanno E; Micera S; Bandini A; Orlandi S
    J Neuroeng Rehabil; 2024 May; 21(1):75. PubMed ID: 38734690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Tricking the Brain" Using Immersive Virtual Reality: Modifying the Self-Perception Over Embodied Avatar Influences Motor Cortical Excitability and Action Initiation.
    Buetler KA; Penalver-Andres J; Özen Ö; Ferriroli L; Müri RM; Cazzoli D; Marchal-Crespo L
    Front Hum Neurosci; 2021; 15():787487. PubMed ID: 35221950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Customizing the human-avatar mapping based on EEG error related potentials.
    Iwane F; Porssut T; Blanke O; Chavarriaga R; Del R Millán J; Herbelin B; Boulic R
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38386506
    [No Abstract]   [Full Text] [Related]  

  • 18. The use of technology-supported mental imagery in neurological rehabilitation: a research protocol.
    Morganti F; Gaggioli A; Castelnuovo G; Bulla D; Vettorello M; Riva G
    Cyberpsychol Behav; 2003 Aug; 6(4):421-7. PubMed ID: 14511455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Combined Virtual Electrode-Based ESA and CNN Method for MI-EEG Signal Feature Extraction and Classification.
    Lun X; Zhang Y; Zhu M; Lian Y; Hou Y
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Mine Works Better": Examining the Influence of Embodiment in Virtual Reality on the Sense of Agency During a Binary Motor Imagery Task With a Brain-Computer Interface.
    Ziadeh H; Gulyas D; Nielsen LD; Lehmann S; Nielsen TB; Kjeldsen TKK; Hougaard BI; Jochumsen M; Knoche H
    Front Psychol; 2021; 12():806424. PubMed ID: 35002899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.