These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38801339)

  • 1. Plant photobiology: From basic theoretical research to crop production improvement.
    Liu H; Li J
    J Integr Plant Biol; 2024 May; 66(5):847-848. PubMed ID: 38801339
    [No Abstract]   [Full Text] [Related]  

  • 2. Exploiting mobile RNA silencing for crop improvement.
    Gohlke J; Mosher RA
    Am J Bot; 2015 Sep; 102(9):1399-400. PubMed ID: 26391704
    [No Abstract]   [Full Text] [Related]  

  • 3. Innovative plant breeding could deliver crop revolution.
    Anders S; Pareek A; Singla-Pareek SL; Gupta KJ; Foyer CH
    Nature; 2020 Jan; 577(7792):622. PubMed ID: 31992889
    [No Abstract]   [Full Text] [Related]  

  • 4. Agrobiodiversity: The living library.
    Gruber K
    Nature; 2017 Apr; 544(7651):S8-S10. PubMed ID: 28445449
    [No Abstract]   [Full Text] [Related]  

  • 5. Plant biotechnology for sustainable agriculture and food safety.
    Fernie AR; Sonnewald U
    J Plant Physiol; 2021 Jun; 261():153416. PubMed ID: 33872931
    [No Abstract]   [Full Text] [Related]  

  • 6. Genetic strategies for improving crop yields.
    Bailey-Serres J; Parker JE; Ainsworth EA; Oldroyd GED; Schroeder JI
    Nature; 2019 Nov; 575(7781):109-118. PubMed ID: 31695205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of Untargeted Metabolomics for Future Assessment of Biotech Crops.
    Christ B; Pluskal T; Aubry S; Weng JK
    Trends Plant Sci; 2018 Dec; 23(12):1047-1056. PubMed ID: 30361071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crop yields: speed up delivery of promising genes.
    Zhang G; Wu Q
    Nature; 2023 Nov; 623(7985):32. PubMed ID: 37907633
    [No Abstract]   [Full Text] [Related]  

  • 9. How can we harness quantitative genetic variation in crop root systems for agricultural improvement?
    Topp CN; Bray AL; Ellis NA; Liu Z
    J Integr Plant Biol; 2016 Mar; 58(3):213-25. PubMed ID: 26911925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cooperative governance network for crop genome editing: The success of governance networks in other areas could help to find common ground for applying genome editing in agriculture.
    Jordan NR; Dorn KM; Smith TM; Wolf KE; Ewing PM; Fernandez AL; Runck BC; Williams A; Lu Y; Kuzma J
    EMBO Rep; 2017 Oct; 18(10):1683-1687. PubMed ID: 28928139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic innovation for crop improvement.
    Bevan MW; Uauy C; Wulff BB; Zhou J; Krasileva K; Clark MD
    Nature; 2017 Mar; 543(7645):346-354. PubMed ID: 28300107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harnessing rhizosphere microbiomes for drought-resilient crop production.
    de Vries FT; Griffiths RI; Knight CG; Nicolitch O; Williams A
    Science; 2020 Apr; 368(6488):270-274. PubMed ID: 32299947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crop asynchrony stabilizes food production.
    Egli L; Schröter M; Scherber C; Tscharntke T; Seppelt R
    Nature; 2020 Dec; 588(7837):E7-E12. PubMed ID: 33299196
    [No Abstract]   [Full Text] [Related]  

  • 14. Systematic Evaluation of Field Crop Performance Using Modern Phenotyping Tools and Techniques.
    Boomsma CR; da Costa VA
    Methods Mol Biol; 2019; 1864():419-440. PubMed ID: 30415350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biostimulant Nanoencapsulation: The New Keystone To Fight Hunger.
    Jiménez-Arias D; Morales-Sierra S; Borges AA; Díaz Díaz D
    J Agric Food Chem; 2020 Jul; 68(27):7083-7085. PubMed ID: 32588622
    [No Abstract]   [Full Text] [Related]  

  • 16. Homecoming: rewinding the reductive evolution of the chloroplast genome for increasing crop yields.
    Llorente B; Segretin ME; Giannini E; Lobais C; Juárez ME; Paulsen IT; Blanco NE
    Nat Commun; 2021 Nov; 12(1):6734. PubMed ID: 34795241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies and tools to improve crop productivity by targeting photosynthesis.
    Nuccio ML; Potter L; Stiegelmeyer SM; Curley J; Cohn J; Wittich PE; Tan X; Davis J; Ni J; Trullinger J; Hall R; Bate NJ
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1730):. PubMed ID: 28808096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gibberellin Metabolism and Signaling: Targets for Improving Agronomic Performance of Crops.
    Gao S; Chu C
    Plant Cell Physiol; 2020 Dec; 61(11):1902-1911. PubMed ID: 32761079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress in understanding drought tolerance: from alleles to cropping systems.
    Varshney RK; Tuberosa R; Tardieu F
    J Exp Bot; 2018 Jun; 69(13):3175-3179. PubMed ID: 29878257
    [No Abstract]   [Full Text] [Related]  

  • 20. Target genes for plant productivity improvement.
    Nowicka B
    J Biotechnol; 2019 Jun; 298():21-34. PubMed ID: 30978366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.