BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38801468)

  • 1. Binding energies and hydrogen bonds effects on DNA-cisplatin interactions: a DFT-xTB study.
    Ludwig V; da Costa Ludwig ZM; Modesto MA; Rocha AA
    J Mol Model; 2024 May; 30(6):187. PubMed ID: 38801468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A QM/MM study of cisplatin-DNA oligonucleotides: from simple models to realistic systems.
    Robertazzi A; Platts JA
    Chemistry; 2006 Jul; 12(22):5747-56. PubMed ID: 16710864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P; Hobza P
    J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate interaction energies of hydrogen-bonded nucleic acid base pairs.
    Sponer J; Jurecka P; Hobza P
    J Am Chem Soc; 2004 Aug; 126(32):10142-51. PubMed ID: 15303890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical study on the hydrogen-bonding interactions between flavonoids and ethanol/water.
    Zheng YZ; Zhou Y; Liang Q; Chen DF; Guo R
    J Mol Model; 2016 Apr; 22(4):95. PubMed ID: 27029620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen-Bond Strength of CC and GG Pairs Determined by Steric Repulsion: Electrostatics and Charge Transfer Overruled.
    van der Lubbe SCC; Fonseca Guerra C
    Chemistry; 2017 Aug; 23(43):10249-10253. PubMed ID: 28485530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations of Stacked DNA Base-Pair Steps: Highly Accurate Stacking Interaction Energies, Energy Decomposition, and Many-Body Stacking Effects.
    Kruse H; Banáš P; Šponer J
    J Chem Theory Comput; 2019 Jan; 15(1):95-115. PubMed ID: 30496689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum-chemical study of interactions of trans-resveratrol with guanine-thymine dinucleotide and DNA-nucleobases.
    Mikulski D; Szeląg M; Molski M
    J Mol Model; 2011 Dec; 17(12):3085-102. PubMed ID: 21360171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The solvent (water) and metal effects on HOMO-LUMO gaps of guanine base pair: A computational study.
    Üngördü A; Tezer N
    J Mol Graph Model; 2017 Jun; 74():265-272. PubMed ID: 28458005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen bonding, solvation, and hydrolysis of cisplatin: a theoretical study.
    Robertazzi A; Platts JA
    J Comput Chem; 2004 Jun; 25(8):1060-7. PubMed ID: 15067681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction energy contributions of H-bonded and stacked structures of the AT and GC DNA base pairs from the combined density functional theory and intermolecular perturbation theory approach.
    Hesselmann A; Jansen G; Schütz M
    J Am Chem Soc; 2006 Sep; 128(36):11730-1. PubMed ID: 16953592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen bonding and covalent effects in binding of cisplatin to purine bases: ab initio and atoms in molecules studies.
    Robertazzi A; Platts JA
    Inorg Chem; 2005 Jan; 44(2):267-74. PubMed ID: 15651872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can modified DNA base pairs with chalcogen bonding expand the genetic alphabet? A combined quantum chemical and molecular dynamics simulation study.
    Sharma KD; Kathuria P; Wetmore SD; Sharma P
    Phys Chem Chem Phys; 2020 Nov; 22(41):23754-23765. PubMed ID: 33063082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels.
    Dabkowska I; Gonzalez HV; Jurecka P; Hobza P
    J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density functional theory study on the interaction between keto-9H guanine and aspartic acid.
    Harris PT; Hill GA
    J Mol Model; 2012 May; 18(5):1983-91. PubMed ID: 21877157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(6):993-1022. PubMed ID: 23730732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2015; 33(8):1624-52. PubMed ID: 25350312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural variability and the nature of intermolecular interactions in Watson-Crick B-DNA base pairs.
    Czyznikowska Z; Góra RW; Zaleśny R; Lipkowski P; Jarzembska KN; Dominiak PM; Leszczynski J
    J Phys Chem B; 2010 Jul; 114(29):9629-44. PubMed ID: 20604521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of CH3, F and NO2 substituents on the individual hydrogen bond energies in the adenine-thymine and guanine-cytosine base pairs.
    Ebrahimi A; Habibi Khorassani SM; Delarami H; Esmaeeli H
    J Comput Aided Mol Des; 2010 May; 24(5):409-16. PubMed ID: 20352295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density functional theory investigation of cocaine water complexes.
    Senthilkumar L; Umadevi P; Nithya KN; Kolandaivel P
    J Mol Model; 2013 Aug; 19(8):3411-25. PubMed ID: 23686284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.