These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 38801672)
21. Effect of Heteroatom Doping on Electrochemical Properties of Olivine LiFePO Jiang X; Xin Y; He B; Zhang F; Tian H Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541453 [TBL] [Abstract][Full Text] [Related]
22. Semi-Ionic C-F bond enabling fluorinated carbons rechargeable as Li-ion batteries cathodes. Chen P; Liu W; Wang H; Jiang Y; Niu X; Wang L J Colloid Interface Sci; 2023 Nov; 649():255-263. PubMed ID: 37348345 [TBL] [Abstract][Full Text] [Related]
23. Transition-Metal Sulfides for High-Performance Lithium Sulfide Cathodes in All-Solid-State Lithium-Sulfur Batteries. Gamo H; Hikima K; Matsuda A ACS Omega; 2023 Dec; 8(48):45557-45565. PubMed ID: 38075765 [TBL] [Abstract][Full Text] [Related]
24. Effect of Ni Doping Content on Phase Transition and Electrochemical Performance of TiO Kang D; Li J; Zhang Y Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183088 [TBL] [Abstract][Full Text] [Related]
25. Metal-Organic Framework-Derived Nanoconfinements of CoF Wu F; Srot V; Chen S; Zhang M; van Aken PA; Wang Y; Maier J; Yu Y ACS Nano; 2021 Jan; 15(1):1509-1518. PubMed ID: 33356136 [TBL] [Abstract][Full Text] [Related]
26. Honeycomb-Like Nitrogen-Doped Carbon 3D Nanoweb@Li Kim Y; Han H; Noh Y; Bae J; Ham MH; Kim WB ChemSusChem; 2019 Feb; 12(4):824-829. PubMed ID: 30569512 [TBL] [Abstract][Full Text] [Related]
27. Improving electrochemical performances of Lithium-rich oxide by cooperatively doping Cr and coating Li Tai Z; Zhu W; Shi M; Xin Y; Guo S; Wu Y; Chen Y; Liu Y J Colloid Interface Sci; 2020 Sep; 576():468-475. PubMed ID: 32473416 [TBL] [Abstract][Full Text] [Related]
28. Fluorinated carbon as high-performance cathode for aqueous zinc primary batteries. Xu C; Zhang L; Liu F; Zhang R; Yue H RSC Adv; 2024 Apr; 14(18):12454-12462. PubMed ID: 38633498 [TBL] [Abstract][Full Text] [Related]
29. Seeding Iron Trifluoride Nanoparticles on Reduced Graphite Oxide for Lithium-Ion Batteries with Enhanced Loading and Stability. Qiu D; Fu L; Zhan C; Lu J; Wu D ACS Appl Mater Interfaces; 2018 Sep; 10(35):29505-29510. PubMed ID: 30092138 [TBL] [Abstract][Full Text] [Related]
30. Ammonium Fluoride Mediated Synthesis of Anhydrous Metal Fluoride-Mesoporous Carbon Nanocomposites for High-Performance Lithium Ion Battery Cathodes. Chun J; Jo C; Sahgong S; Kim MG; Lim E; Kim DH; Hwang J; Kang E; Ryu KA; Jung YS; Kim Y; Lee J ACS Appl Mater Interfaces; 2016 Dec; 8(51):35180-35190. PubMed ID: 27754647 [TBL] [Abstract][Full Text] [Related]
31. Metal (Cu/Fe/Mn)-Doped Silicon/Graphite Composite as a Cost-Effective Anode for Li-Ion Batteries. Nulu A; Hwang YG; Nulu V; Sohn KY Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080040 [TBL] [Abstract][Full Text] [Related]
32. Quasi-Solid-State Lithium-Sulfur Batteries Assembled by Composite Polymer Electrolyte and Nitrogen Doped Porous Carbon Fiber Composite Cathode. Liang X; Zhang Y; Ning Y; Huang D; Lan L; Li S Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957044 [TBL] [Abstract][Full Text] [Related]
33. Solvation Structure Tuning Induces LiF/Li Li P; Cheng Z; Liu J; Che L; Zhou Y; Xu E; Tian X; Yuan Z Small; 2023 Dec; 19(49):e2303149. PubMed ID: 37608448 [TBL] [Abstract][Full Text] [Related]
34. Enable Rechargeable Carbon Fluoride Batteries with Unprecedented High Rate and Long Life by Oxygen Doping and Electrolyte Formulation. Li D; Yu Y; Li C Adv Mater; 2024 Nov; 36(47):e2408301. PubMed ID: 39375988 [TBL] [Abstract][Full Text] [Related]
35. Boron and Nitrogen Codoped Carbon Layers of LiFePO4 Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries. Zhang J; Nie N; Liu Y; Wang J; Yu F; Gu J; Li W ACS Appl Mater Interfaces; 2015 Sep; 7(36):20134-43. PubMed ID: 26305802 [TBL] [Abstract][Full Text] [Related]
36. Pomegranate-Structured Conversion-Reaction Cathode with a Built-in Li Source for High-Energy Li-Ion Batteries. Fan X; Zhu Y; Luo C; Suo L; Lin Y; Gao T; Xu K; Wang C ACS Nano; 2016 May; 10(5):5567-77. PubMed ID: 27163232 [TBL] [Abstract][Full Text] [Related]
37. Biomass-Derived Carbon Utilization for Electrochemical Energy Enhancement in Lithium-Ion Batteries. Jeong BJ; Jiang F; Sung JY; Jung SP; Oh DW; Gnanamuthu RM; Vediappan K; Lee CW Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921875 [TBL] [Abstract][Full Text] [Related]
38. An individual sandwich hybrid nanostructure of cobalt disulfide in-situ grown on N doped carbon layer wrapped on multi-walled carbon nanotubes for high-efficiency lithium sulfur batteries. Lin Y; Ouyang Z; He S; Song X; Luo Y; Zhao J; Xiao Y; Lei S; Yuan C; Cheng B J Colloid Interface Sci; 2022 Mar; 610():560-572. PubMed ID: 34838317 [TBL] [Abstract][Full Text] [Related]
39. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
40. Enhancing Adsorption and Reaction Kinetics of Polysulfides Using CoP-Coated N-Doped Mesoporous Carbon for High-Energy-Density Lithium-Sulfur Batteries. Cheng Q; Yin Z; Pan S; Zhang G; Pan Z; Yu X; Fang Y; Rao H; Zhong X ACS Appl Mater Interfaces; 2020 Sep; 12(39):43844-43853. PubMed ID: 32897698 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]