These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38801681)
1. EDA-Graph: Graph Signal Processing of Electrodermal Activity for Emotional States Detection. Mercado-Diaz LR; Veeranki YR; Marmolejo-Ramos F; Posada-Quintero HF IEEE J Biomed Health Inform; 2024 Aug; 28(8):4599-4612. PubMed ID: 38801681 [TBL] [Abstract][Full Text] [Related]
2. Assessment of Valance Emotional State Using EEG-EDA Coupling and Explainable Classifiers. Banik S; Kumar H; Ganapathy N; Swaminathan R Stud Health Technol Inform; 2024 Aug; 316():953-957. PubMed ID: 39176950 [TBL] [Abstract][Full Text] [Related]
3. Comparative Analysis of Electrodermal Activity Decomposition Methods in Emotion Detection Using Machine Learning. Sriram Kumar P ; Govarthan PK; Ganapathy N; Agastinose Ronickom JF Stud Health Technol Inform; 2023 May; 302():73-77. PubMed ID: 37203612 [TBL] [Abstract][Full Text] [Related]
4. Classification of Dichotomous Emotional States Using Electrodermal Activity Signals and Multispectral Analysis. Veeranki YR; Ganapathy N; Swaminathan R Stud Health Technol Inform; 2022 May; 294():941-942. PubMed ID: 35612249 [TBL] [Abstract][Full Text] [Related]
5. Analysis of physiological signals for recognition of boredom, pain, and surprise emotions. Jang EH; Park BJ; Park MS; Kim SH; Sohn JH J Physiol Anthropol; 2015 Jun; 34(1):25. PubMed ID: 26084816 [TBL] [Abstract][Full Text] [Related]
6. Point process temporal structure characterizes electrodermal activity. Subramanian S; Barbieri R; Brown EN Proc Natl Acad Sci U S A; 2020 Oct; 117(42):26422-26428. PubMed ID: 33008878 [TBL] [Abstract][Full Text] [Related]
7. Optimal Electrodermal Activity Segment for Enhanced Emotion Recognition Using Spectrogram-Based Feature Extraction and Machine Learning. P SK; Agastinose Ronickom JF Int J Neural Syst; 2024 May; 34(5):2450027. PubMed ID: 38511233 [TBL] [Abstract][Full Text] [Related]
9. Non-Parametric Classifiers Based Emotion Classification Using Electrodermal Activity and Modified Hjorth Features. Veeranki YR; Ganapathy N; Swaminathan R Stud Health Technol Inform; 2021 May; 281():163-167. PubMed ID: 34042726 [TBL] [Abstract][Full Text] [Related]
10. A Preliminary Study on Automatic Motion Artifact Detection in Electrodermal Activity Data Using Machine Learning. Hossain MB; Posada-Quintero HF; Kong Y; McNaboe R; Chon KH Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6920-6923. PubMed ID: 34892695 [TBL] [Abstract][Full Text] [Related]
11. Human Activity Recognition Algorithm with Physiological and Inertial Signals Fusion: Photoplethysmography, Electrodermal Activity, and Accelerometry. Gilmore J; Nasseri M Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793858 [TBL] [Abstract][Full Text] [Related]
12. Analysis of sympathetic responses to cognitive stress and pain through skin sympathetic nerve activity and electrodermal activity. Baghestani F; Kong Y; D'Angelo W; Chon KH Comput Biol Med; 2024 Mar; 170():108070. PubMed ID: 38330822 [TBL] [Abstract][Full Text] [Related]
13. [The characteristics of the electrodermal activity during changes in the level of human wakefulness]. Dementienko VV; Dorokhov VB; Koreneva LG; Markov AG; Shakhnarovich VM Zh Vyssh Nerv Deiat Im I P Pavlova; 1999; 49(6):926-35. PubMed ID: 10693272 [TBL] [Abstract][Full Text] [Related]
14. Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolutional Neural Network. Ganapathy N; Veeranki YR; Kumar H; Swaminathan R J Med Syst; 2021 Mar; 45(4):49. PubMed ID: 33660087 [TBL] [Abstract][Full Text] [Related]
15. Simple, Transparent, and Flexible Automated Quality Assessment Procedures for Ambulatory Electrodermal Activity Data. Kleckner IR; Jones RM; Wilder-Smith O; Wormwood JB; Akcakaya M; Quigley KS; Lord C; Goodwin MS IEEE Trans Biomed Eng; 2018 Jul; 65(7):1460-1467. PubMed ID: 28976309 [TBL] [Abstract][Full Text] [Related]
16. Emotion Recognition With Knowledge Graph Based on Electrodermal Activity. Perry Fordson H; Xing X; Guo K; Xu X Front Neurosci; 2022; 16():911767. PubMed ID: 35757534 [TBL] [Abstract][Full Text] [Related]
17. Deep Learning Framework for Categorical Emotional States Assessment Using Electrodermal Activity Signals. Govarthan PK; Sriram Kumar P ; Ganapathy N; Agastinose Ronickom JF Stud Health Technol Inform; 2023 Jun; 305():40-43. PubMed ID: 37386952 [TBL] [Abstract][Full Text] [Related]
18. A Compressed Sensing Based Decomposition of Electrodermal Activity Signals. Jain S; Oswal U; Xu KS; Eriksson B; Haupt J IEEE Trans Biomed Eng; 2017 Sep; 64(9):2142-2151. PubMed ID: 27893381 [TBL] [Abstract][Full Text] [Related]
19. Stress State Classification Based on Deep Neural Network and Electrodermal Activity Modeling. Vasile F; Vizziello A; Brondino N; Savazzi P Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904705 [TBL] [Abstract][Full Text] [Related]
20. Electrodermal responses: what happens in the brain. Critchley HD Neuroscientist; 2002 Apr; 8(2):132-42. PubMed ID: 11954558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]