These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 38801713)
1. Stabilization of Uranium in Acid Ore Wastewater through Hydrothermal Mineralization-Induced Crystallization. Kong L; Long X; Yu Z; Song P; Diao Z; Song G; Chen D Inorg Chem; 2024 Jun; 63(23):10611-10618. PubMed ID: 38801713 [TBL] [Abstract][Full Text] [Related]
2. Biosorption and biomineralization of uranium(VI) by Saccharomyces cerevisiae-Crystal formation of chernikovite. Zheng XY; Wang XY; Shen YH; Lu X; Wang TS Chemosphere; 2017 May; 175():161-169. PubMed ID: 28211330 [TBL] [Abstract][Full Text] [Related]
4. Selective adsorption of uranium (VI) from wastewater using a UiO-66/calcium alginate/hydrothermal carbon composite material. Wen S; Wang H; Xin Q; Hu E; Lei Z; Hu F; Wang Q Carbohydr Polym; 2023 Sep; 315():120970. PubMed ID: 37230612 [TBL] [Abstract][Full Text] [Related]
5. Synergistic effects of hydrogen peroxide and phosphate on uranium(VI) immobilization: implications for the remediation of groundwater at decommissioned in situ leaching uranium mine. Li F; Huang X; Wang S; Zhang H; Ma J; Ding Y; Ding D Environ Sci Pollut Res Int; 2023 Nov; 30(55):117132-117142. PubMed ID: 37864694 [TBL] [Abstract][Full Text] [Related]
6. The biomineralization process of uranium(VI) by Saccharomyces cerevisiae - transformation from amorphous U(VI) to crystalline chernikovite. Shen Y; Zheng X; Wang X; Wang T Appl Microbiol Biotechnol; 2018 May; 102(9):4217-4229. PubMed ID: 29564524 [TBL] [Abstract][Full Text] [Related]
8. Biomimetic synthesis of polydopamine-graphene oxide/hydroxyapatite for efficient and fast uranium(VI) capture from aqueous solution. Xiong W; Liu H; Yang S; Liu Y; Fu T Environ Sci Pollut Res Int; 2023 Nov; 30(53):114569-114581. PubMed ID: 37861826 [TBL] [Abstract][Full Text] [Related]
9. "One-can" strategy for the synthesis of hydrothermal biochar modified with phosphate groups and efficient removal of uranium(VI). Chen X; Wang Y; Xia H; Ren Q; Li Y; Xu L; Xie C; Wang Y J Environ Radioact; 2023 Jul; 263():107182. PubMed ID: 37094506 [TBL] [Abstract][Full Text] [Related]
10. Functionalization of carbon nanomaterials by means of phytic acid for uranium enrichment. Li L; Ma R; Wen T; Gu P; Zhang S; Zheng M; Wu X; Zhang X; Hayat T; Wang X Sci Total Environ; 2019 Dec; 694():133697. PubMed ID: 31401514 [TBL] [Abstract][Full Text] [Related]
11. Phytic acid-functionalized polyamidoxime/alginate hydrogel for targeted uranium extraction from acidic wastewater. Dai Z; Wu H; Chen L; Gao Y; Li L; Ding D Carbohydr Polym; 2024 Sep; 339():122283. PubMed ID: 38823934 [TBL] [Abstract][Full Text] [Related]
12. Effect of pH on uranium(VI) biosorption and biomineralization by Saccharomyces cerevisiae. Zheng XY; Shen YH; Wang XY; Wang TS Chemosphere; 2018 Jul; 203():109-116. PubMed ID: 29614403 [TBL] [Abstract][Full Text] [Related]
13. Vibrational spectroscopy of synthetic analogues of ankoleite, chernikovite and intermediate solid solution. Clavier N; Crétaz F; Szenknect S; Mesbah A; Poinssot C; Descostes M; Dacheux N Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 156():143-50. PubMed ID: 26688205 [TBL] [Abstract][Full Text] [Related]
14. Efficient uranium(VI) adsorbing bioinspired nano-sized hydroxyapatite composites: synthesis, tuning, and adsorption mechanism. Liu H; Wang X; Li Y; Min Z; You H; Xie S; Liu Y; Yang H Environ Sci Pollut Res Int; 2023 Feb; 30(7):18156-18167. PubMed ID: 36207633 [TBL] [Abstract][Full Text] [Related]
15. Elimination of uranium pollution from coastal nuclear power plant by marine microorganisms: Capability and mechanism. Yan M; Gao Q; Shao D Sci Total Environ; 2024 Mar; 914():169959. PubMed ID: 38190894 [TBL] [Abstract][Full Text] [Related]
16. Biosorption and biomineralization of U(VI) by Kocuria rosea: Involvement of phosphorus and formation of U-P minerals. Zhou L; Dong F; Zhang W; Chen Y; Zhou L; Zheng F; Lv Z; Xue J; He D Chemosphere; 2022 Feb; 288(Pt 3):132659. PubMed ID: 34699883 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of uranium interactions with hydroxyapatite: implications for groundwater remediation. Fuller CC; Bargar JR; Davis JA; Piana MJ Environ Sci Technol; 2002 Jan; 36(2):158-65. PubMed ID: 11827049 [TBL] [Abstract][Full Text] [Related]
18. Rapid and effective removal of uranium (VI) from aqueous solution by facile synthesized hierarchical hollow hydroxyapatite microspheres. Wu Y; Chen D; Kong L; Tsang DCW; Su M J Hazard Mater; 2019 Jun; 371():397-405. PubMed ID: 30870644 [TBL] [Abstract][Full Text] [Related]
19. Development of highly efficient bundle-like hydroxyapatite towards abatement of aqueous U(VI) ions: Mechanism and economic assessment. Shi Q; Su M; Yuvaraja G; Tang J; Kong L; Chen D J Hazard Mater; 2020 Jul; 394():122550. PubMed ID: 32299040 [TBL] [Abstract][Full Text] [Related]
20. Lactic acid bacteria induce phosphate recrystallization for the in situ remediation of uranium-contaminated topsoil: Principle and application. He Z; Dong L; Zhang K; Zhang D; Pan X Environ Pollut; 2022 Dec; 314():120277. PubMed ID: 36167164 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]