These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 38801756)
21. Dynamic mechanical behavior of starch-based scaffolds in dry and physiologically simulated conditions: effect of porosity and pore size. Ghosh S; Gutierrez V; Fernández C; Rodriguez-Perez MA; Viana JC; Reis RL; Mano JF Acta Biomater; 2008 Jul; 4(4):950-9. PubMed ID: 18331817 [TBL] [Abstract][Full Text] [Related]
22. Design and Analysis of Porous Elastomeric Polymer Based on Electro-Mechanical Coupling Characteristics for Flexible Pressure Sensor. Bu Y; Wu J; Zhang Z; Wei Q; Su B; Wang Y Polymers (Basel); 2024 Mar; 16(5):. PubMed ID: 38475384 [TBL] [Abstract][Full Text] [Related]
23. Effect of Pore Shape on Mechanical Properties of Porous Shape Memory Alloy. Liu B; Pan Y Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457871 [TBL] [Abstract][Full Text] [Related]
24. The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds. Torres-Sanchez C; Al Mushref FRA; Norrito M; Yendall K; Liu Y; Conway PP Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():219-228. PubMed ID: 28532024 [TBL] [Abstract][Full Text] [Related]
25. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. Korhonen RK; Laasanen MS; Töyräs J; Rieppo J; Hirvonen J; Helminen HJ; Jurvelin JS J Biomech; 2002 Jul; 35(7):903-9. PubMed ID: 12052392 [TBL] [Abstract][Full Text] [Related]
26. Microstructural dependence of Young's and shear moduli of P2O5 glass reinforced hydroxyapatite for biomedical applications. Lopes MA; Silva RF; Monteiro FJ; Santos JD Biomaterials; 2000 Apr; 21(7):749-54. PubMed ID: 10711972 [TBL] [Abstract][Full Text] [Related]
27. Photocurable high internal phase emulsions (HIPEs) containing hydroxyapatite for additive manufacture of tissue engineering scaffolds with multi-scale porosity. Wang AJ; Paterson T; Owen R; Sherborne C; Dugan J; Li JM; Claeyssens F Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():51-58. PubMed ID: 27287098 [TBL] [Abstract][Full Text] [Related]
28. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering. Xu JL; Bao LZ; Liu AH; Jin XJ; Tong YX; Luo JM; Zhong ZC; Zheng YF Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():387-93. PubMed ID: 25492002 [TBL] [Abstract][Full Text] [Related]
29. "Apparent" Young's elastic modulus and radial recovery for some tableted pharmaceutical excipients. Kachrimanis K; Malamataris S Eur J Pharm Sci; 2004 Feb; 21(2-3):197-207. PubMed ID: 14757491 [TBL] [Abstract][Full Text] [Related]
30. Estimation of Young's modulus of pharmaceutical tablet obtained by terahertz time-delay measurement. Peiponen KE; Bawuah P; Chakraborty M; Juuti M; Zeitler JA; Ketolainen J Int J Pharm; 2015 Jul; 489(1-2):100-5. PubMed ID: 25934425 [TBL] [Abstract][Full Text] [Related]
31. Effect of Physical Properties on Mechanical Behaviors of Sandstone under Uniaxial and Triaxial Compressions. Alomari EM; Ng KW; Khatri L; Wulff SS Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445181 [TBL] [Abstract][Full Text] [Related]
32. Young's Modulus of Different Illitic Clays during Heating and Cooling Stage of Firing. Húlan T; Štubňa I; Ondruška J; Csáki Š; Lukáč F; Mánik M; Vozár L; Ozolins J; Kaljuvee T; Trník A Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33158292 [TBL] [Abstract][Full Text] [Related]
33. Mechanical performance of polymer-infiltrated zirconia ceramics. Li J; Zhang XH; Cui BC; Lin YH; Deng XL; Li M; Nan CW J Dent; 2017 Mar; 58():60-66. PubMed ID: 28159508 [TBL] [Abstract][Full Text] [Related]
34. Young's modulus repeatability assessment using cycling compression loading on cancellous bone. Guérard S; Chevalier Y; Moreschi H; Defontaine M; Callé S; Mitton D Proc Inst Mech Eng H; 2011 Nov; 225(11):1113-7. PubMed ID: 22292210 [TBL] [Abstract][Full Text] [Related]
35. Effect of microstructure on the mechanical properties of Haversian cortical bone. Hoc T; Henry L; Verdier M; Aubry D; Sedel L; Meunier A Bone; 2006 Apr; 38(4):466-74. PubMed ID: 16332459 [TBL] [Abstract][Full Text] [Related]
36. Computational Study of the Influence of α/β-Phase Ratio and Porosity on the Elastic Modulus of Ti-Based Alloy Foams. Aguilar C; Henriquez J; Salvo C; Alfonso I; Araya N; Muñoz L Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297198 [TBL] [Abstract][Full Text] [Related]
37. On some features of the shape effect in human dentin under compression. Zaytsev D; Panfilov P Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():205-9. PubMed ID: 25491821 [TBL] [Abstract][Full Text] [Related]
38. A comparison of porosity, fabric and fractal dimension as predictors of the Young's modulus of equine cancellous bone. Haire TJ; Hodgskinson R; Ganney PS; Langton CM Med Eng Phys; 1998 Nov; 20(8):588-93. PubMed ID: 9888237 [TBL] [Abstract][Full Text] [Related]
39. Extreme hardening of PDMS thin films due to high compressive strain and confined thickness. Xu W; Chahine N; Sulchek T Langmuir; 2011 Jul; 27(13):8470-7. PubMed ID: 21634411 [TBL] [Abstract][Full Text] [Related]
40. Distribution of Young's modulus at various sampling points in a human lumbar spine vertebral body. Ogurkowska MB; Błaszczyk A Spine J; 2020 Nov; 20(11):1861-1875. PubMed ID: 32592901 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]