BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 38801866)

  • 1. The type V effectors for CRISPR/Cas-mediated genome engineering in plants.
    Zhang R; Chai N; Liu T; Zheng Z; Lin Q; Xie X; Wen J; Yang Z; Liu YG; Zhu Q
    Biotechnol Adv; 2024 May; 74():108382. PubMed ID: 38801866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research progress on nucleic acid detection and genome editing of CRISPR/Cas12 system.
    Yang Y; Wang D; Lü P; Ma S; Chen K
    Mol Biol Rep; 2023 Apr; 50(4):3723-3738. PubMed ID: 36648696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox.
    Koonin EV; Gootenberg JS; Abudayyeh OO
    Biochemistry; 2023 Dec; 62(24):3465-3487. PubMed ID: 37192099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniature CRISPR-Cas12 Systems: Mechanisms, Engineering, and Genome Editing Applications.
    Tang N; Ji Q
    ACS Chem Biol; 2024 Jun; ():. PubMed ID: 38899980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cas13d: A New Molecular Scissor for Transcriptome Engineering.
    Gupta R; Ghosh A; Chakravarti R; Singh R; Ravichandiran V; Swarnakar S; Ghosh D
    Front Cell Dev Biol; 2022; 10():866800. PubMed ID: 35433685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Versatile Type V CRISPR Effectors and Their Application Prospects.
    Tong B; Dong H; Cui Y; Jiang P; Jin Z; Zhang D
    Front Cell Dev Biol; 2020; 8():622103. PubMed ID: 33614630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas12a (Cpf1): A Versatile Tool in the Plant Genome Editing Tool Box for Agricultural Advancement.
    Bandyopadhyay A; Kancharla N; Javalkote VS; Dasgupta S; Brutnell TP
    Front Plant Sci; 2020; 11():584151. PubMed ID: 33214794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionally diverse type V CRISPR-Cas systems.
    Yan WX; Hunnewell P; Alfonse LE; Carte JM; Keston-Smith E; Sothiselvam S; Garrity AJ; Chong S; Makarova KS; Koonin EV; Cheng DR; Scott DA
    Science; 2019 Jan; 363(6422):88-91. PubMed ID: 30523077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniature type V-F CRISPR-Cas nucleases enable targeted DNA modification in cells.
    Bigelyte G; Young JK; Karvelis T; Budre K; Zedaveinyte R; Djukanovic V; Van Ginkel E; Paulraj S; Gasior S; Jones S; Feigenbutz L; Clair GS; Barone P; Bohn J; Acharya A; Zastrow-Hayes G; Henkel-Heinecke S; Silanskas A; Seidel R; Siksnys V
    Nat Commun; 2021 Oct; 12(1):6191. PubMed ID: 34702830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cas11 enables genome engineering in human cells with compact CRISPR-Cas3 systems.
    Tan R; Krueger RK; Gramelspacher MJ; Zhou X; Xiao Y; Ke A; Hou Z; Zhang Y
    Mol Cell; 2022 Feb; 82(4):852-867.e5. PubMed ID: 35051351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Class 2 CRISPR/Cas: an expanding biotechnology toolbox for and beyond genome editing.
    Tang Y; Fu Y
    Cell Biosci; 2018; 8():59. PubMed ID: 30459943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic and evolutionary insights into a type V-M CRISPR-Cas effector enzyme.
    Omura SN; Nakagawa R; Südfeld C; Villegas Warren R; Wu WY; Hirano H; Laffeber C; Kusakizako T; Kise Y; Lebbink JHG; Itoh Y; van der Oost J; Nureki O
    Nat Struct Mol Biol; 2023 Aug; 30(8):1172-1182. PubMed ID: 37460897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An update on CRISPR-Cas12 as a versatile tool in genome editing.
    Senthilnathan R; Ilangovan I; Kunale M; Easwaran N; Ramamoorthy S; Veeramuthu A; Kodiveri Muthukaliannan G
    Mol Biol Rep; 2023 Mar; 50(3):2865-2881. PubMed ID: 36641494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas nucleases and base editors for plant genome editing.
    Gürel F; Zhang Y; Sretenovic S; Qi Y
    aBIOTECH; 2020 Jan; 1(1):74-87. PubMed ID: 36305010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in gene editing tools, implications and success in plants: a review.
    Bhuyan SJ; Kumar M; Ramrao Devde P; Rai AC; Mishra AK; Singh PK; Siddique KHM
    Front Genome Ed; 2023; 5():1272678. PubMed ID: 38144710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Features and Current Applications of the RNA-Targeting Type VI CRISPR-Cas Systems.
    Perčulija V; Lin J; Zhang B; Ouyang S
    Adv Sci (Weinh); 2021 Jul; 8(13):2004685. PubMed ID: 34254038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Innate programmable DNA binding by CRISPR-Cas12m effectors enable efficient base editing.
    Bigelyte G; Duchovska B; Zedaveinyte R; Sasnauskas G; Sinkunas T; Dalgediene I; Tamulaitiene G; Silanskas A; Kazlauskas D; Valančauskas L; Madariaga-Marcos J; Seidel R; Siksnys V; Karvelis T
    Nucleic Acids Res; 2024 Apr; 52(6):3234-3248. PubMed ID: 38261981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review on the Mechanism and Applications of CRISPR/Cas9/Cas12/Cas13/Cas14 Proteins Utilized for Genome Engineering.
    Hillary VE; Ceasar SA
    Mol Biotechnol; 2023 Mar; 65(3):311-325. PubMed ID: 36163606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The next generation of CRISPR-Cas technologies and applications.
    Pickar-Oliver A; Gersbach CA
    Nat Rev Mol Cell Biol; 2019 Aug; 20(8):490-507. PubMed ID: 31147612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome and transcriptome engineering by compact and versatile CRISPR-Cas systems.
    Aquino-Jarquin G
    Drug Discov Today; 2023 Nov; 28(11):103793. PubMed ID: 37797813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.