These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 38801866)

  • 21. Multiplexed conditional genome editing with Cas12a in
    Port F; Starostecka M; Boutros M
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22890-22899. PubMed ID: 32843348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advancements in CRISPR/Cas technology for accelerated crop improvement.
    Das D; Singha DL; Paswan RR; Chowdhury N; Sharma M; Reddy PS; Chikkaputtaiah C
    Planta; 2022 Apr; 255(5):109. PubMed ID: 35460444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advancements of CRISPR-Mediated Base Editing in Crops and Potential Applications in
    Yang X; Zhu P; Gui J
    Int J Mol Sci; 2024 Jul; 25(15):. PubMed ID: 39125884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Can genetic engineering-based methods for gene function identification be eclipsed by genome editing in plants? A comparison of methodologies.
    Amritha PP; Shah JM
    Mol Genet Genomics; 2021 May; 296(3):485-500. PubMed ID: 33751237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanistic and evolutionary insights into a type V-M CRISPR-Cas effector enzyme.
    Omura SN; Nakagawa R; Südfeld C; Villegas Warren R; Wu WY; Hirano H; Laffeber C; Kusakizako T; Kise Y; Lebbink JHG; Itoh Y; van der Oost J; Nureki O
    Nat Struct Mol Biol; 2023 Aug; 30(8):1172-1182. PubMed ID: 37460897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR/Cas systems: opportunities and challenges for crop breeding.
    Biswas S; Zhang D; Shi J
    Plant Cell Rep; 2021 Jun; 40(6):979-998. PubMed ID: 33977326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome editing for plant research and crop improvement.
    Zhan X; Lu Y; Zhu JK; Botella JR
    J Integr Plant Biol; 2021 Jan; 63(1):3-33. PubMed ID: 33369120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant-Based Biosensors for Detecting CRISPR-Mediated Genome Engineering.
    Yuan G; Hassan MM; Yao T; Lu H; Vergara MM; Labbé JL; Muchero W; Pan C; Chen JG; Tuskan GA; Qi Y; Abraham PE; Yang X
    ACS Synth Biol; 2021 Dec; 10(12):3600-3603. PubMed ID: 34878784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/Cas9; A robust technology for producing genetically engineered plants.
    Farooq R; Hussain K; Nazir S; Javed MR; Masood N
    Cell Mol Biol (Noisy-le-grand); 2018 Nov; 64(14):31-38. PubMed ID: 30511631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expanding the plant genome editing toolbox with recently developed CRISPR-Cas systems.
    Wada N; Osakabe K; Osakabe Y
    Plant Physiol; 2022 Mar; 188(4):1825-1837. PubMed ID: 35099553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome editing in plants with MAD7 nuclease.
    Lin Q; Zhu Z; Liu G; Sun C; Lin D; Xue C; Li S; Zhang D; Gao C; Wang Y; Qiu JL
    J Genet Genomics; 2021 Jun; 48(6):444-451. PubMed ID: 34120856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR-based genome editing in wheat: a comprehensive review and future prospects.
    Kumar R; Kaur A; Pandey A; Mamrutha HM; Singh GP
    Mol Biol Rep; 2019 Jun; 46(3):3557-3569. PubMed ID: 30941642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An update on CRISPR-Cas12 as a versatile tool in genome editing.
    Senthilnathan R; Ilangovan I; Kunale M; Easwaran N; Ramamoorthy S; Veeramuthu A; Kodiveri Muthukaliannan G
    Mol Biol Rep; 2023 Mar; 50(3):2865-2881. PubMed ID: 36641494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants.
    Chennakesavulu K; Singh H; Trivedi PK; Jain M; Yadav SR
    Plant Cell Rep; 2022 Mar; 41(3):815-831. PubMed ID: 33742256
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome editing in mammalian cells using the CRISPR type I-D nuclease.
    Osakabe K; Wada N; Murakami E; Miyashita N; Osakabe Y
    Nucleic Acids Res; 2021 Jun; 49(11):6347-6363. PubMed ID: 34076237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Virus-Induced Gene Editing and Its Applications in Plants.
    Zhang C; Liu S; Li X; Zhang R; Li J
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Virus-Mediated Genome Editing in Plants Using the CRISPR/Cas9 System.
    Mahas A; Ali Z; Tashkandi M; Mahfouz MM
    Methods Mol Biol; 2019; 1917():311-326. PubMed ID: 30610646
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR/Cas9-mediated targeted T-DNA integration in rice.
    Lee K; Eggenberger AL; Banakar R; McCaw ME; Zhu H; Main M; Kang M; Gelvin SB; Wang K
    Plant Mol Biol; 2019 Mar; 99(4-5):317-328. PubMed ID: 30645710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanotechnology to advance CRISPR-Cas genetic engineering of plants.
    Demirer GS; Silva TN; Jackson CT; Thomas JB; W Ehrhardt D; Rhee SY; Mortimer JC; Landry MP
    Nat Nanotechnol; 2021 Mar; 16(3):243-250. PubMed ID: 33712738
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A compact Cascade-Cas3 system for targeted genome engineering.
    Csörgő B; León LM; Chau-Ly IJ; Vasquez-Rifo A; Berry JD; Mahendra C; Crawford ED; Lewis JD; Bondy-Denomy J
    Nat Methods; 2020 Dec; 17(12):1183-1190. PubMed ID: 33077967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.