These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38801876)

  • 41. Lead removal by phosphate solubilizing bacteria isolated from soil through biomineralization.
    Zhang K; Xue Y; Xu H; Yao Y
    Chemosphere; 2019 Jun; 224():272-279. PubMed ID: 30825853
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of phosphate solubilizing bacteria in immobilization of Pb and Cd in soil.
    Yuan Z; Yi H; Wang T; Zhang Y; Zhu X; Yao J
    Environ Sci Pollut Res Int; 2017 Sep; 24(27):21877-21884. PubMed ID: 28779341
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions.
    Cao X; Ma LQ; Singh SP; Zhou Q
    Environ Pollut; 2008 Mar; 152(1):184-92. PubMed ID: 17601642
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Uptake of phosphorus and lead by Brassica juncea and Medicago sativa from chloropyromorphite.
    Abbaspour A; Arocena JM; Kalbasi M
    Int J Phytoremediation; 2012 Jul; 14(6):531-42. PubMed ID: 22908624
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Performance of oxalate-doped hydroxyapatite as well as relative contribution of oxalate and phosphate for aqueous lead removal.
    Fu H; Li X; Dai G; Bai M; Sheng W; Zhang X; Liu J; Wang L
    Sci Total Environ; 2023 Jan; 857(Pt 3):159596. PubMed ID: 36280073
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lead immobilization by phosphate in the presence of iron oxides: Adsorption versus precipitation.
    Shi Q; Zhang S; Ge J; Wei J; Christodoulatos C; Korfiatis GP; Meng X
    Water Res; 2020 Jul; 179():115853. PubMed ID: 32388052
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solubilization of Pb-bearing apatite Pb
    Drewniak Ł; Skłodowska A; Manecki M; Bajda T
    Chemosphere; 2017 Mar; 171():302-307. PubMed ID: 28027474
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Remediation of lead-contaminated sediment by biochar-supported nano-chlorapatite: Accompanied with the change of available phosphorus and organic matters.
    Huang D; Deng R; Wan J; Zeng G; Xue W; Wen X; Zhou C; Hu L; Liu X; Xu P; Guo X; Ren X
    J Hazard Mater; 2018 Apr; 348():109-116. PubMed ID: 29422193
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils.
    Park JH; Bolan N; Megharaj M; Naidu R
    Sci Total Environ; 2011 Jan; 409(4):853-60. PubMed ID: 21130488
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel combined method of biosorption and chemical precipitation for recovery of Pb
    Tang JQ; Xi JB; Yu JX; Chi RA; Chen JD
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28705-28712. PubMed ID: 30097987
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lead immobilization and bioavailability in microbial and root interface.
    Park JH; Bolan N
    J Hazard Mater; 2013 Oct; 261():777-83. PubMed ID: 23489643
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The inhibition of Pb(IV) oxide formation in chlorinated water by orthophosphate.
    Lytle DA; Schock MR; Scheckel K
    Environ Sci Technol; 2009 Sep; 43(17):6624-31. PubMed ID: 19764227
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis and characterization of stable lead (II) orthophosphate nanoparticle suspensions.
    Lytle DA; Formal C; Doré E; Muhlen C; Harmon S; Williams D; Triantafyllidou S; Pham M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(13):1504-1512. PubMed ID: 32960136
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effective passivation of lead by phosphate solubilizing bacteria capsules containing tricalcium phosphate.
    Zhang K; Teng Z; Shao W; Wang Y; Li M; Lam SS
    J Hazard Mater; 2020 Oct; 397():122754. PubMed ID: 32361140
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The incorporation of Pb
    Lu X; Zhong R; Liu Y; Li Z; Yang J; Wang F
    J Environ Manage; 2020 Dec; 276():111359. PubMed ID: 32949844
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Removal of lead and phosphate ions from aqueous solutions by organo-smectite.
    Bajda T; Szala B; Solecka U
    Environ Technol; 2015; 36(22):2872-83. PubMed ID: 25978583
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lead immobilization in simulated polluted soil by Douglas fir biochar-supported phosphate.
    Beatrice A; Varco JJ; Dygert A; Atsar FS; Solomon S; Thirumalai RVKG; Pittman CU; Mlsna T
    Chemosphere; 2022 Apr; 292():133355. PubMed ID: 34929276
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phosphate treatment of firing range soils: lead fixation or phosphorus release?
    Dermatas D; Chrysochoou M; Grubb DG; Xu X
    J Environ Qual; 2008; 37(1):47-56. PubMed ID: 18178877
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of Pb(II) immobilized by bone char meal and phosphate rock: characterization and kinetic study.
    Chen S; Ma Y; Chen L; Wang L; Guo H
    Arch Environ Contam Toxicol; 2010 Jan; 58(1):24-32. PubMed ID: 19471990
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Immobilization of lead in shooting range soils by means of cement, quicklime, and phosphate amendments.
    Cao X; Dermatas D; Xu X; Shen G
    Environ Sci Pollut Res Int; 2008 Mar; 15(2):120-7. PubMed ID: 18380230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.