These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38801876)

  • 61. Applying the first microcapsule-based self-healing microbial-induced calcium carbonate materials to prevent the migration of Pb ions.
    Xue ZF; Cheng WC; Wang L; Qin P; Xie YX; Hu W
    Environ Res; 2023 Dec; 239(Pt 2):117423. PubMed ID: 37858687
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Synchronous removal of ammonia nitrogen, phosphate, and calcium by heterotrophic nitrifying strain Pseudomonas sp. Y1 based on microbial induced calcium precipitation.
    Yang W; Xu L; Wang Z; Li K; Hu R; Su J; Zhang L
    Bioresour Technol; 2022 Nov; 363():127996. PubMed ID: 36150425
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Induced biotransformation of lead (II) by Enterobacter sp. in SO
    Li Z; Su M; Duan X; Tian D; Yang M; Guo J; Wang S; Hu S
    J Hazard Mater; 2018 Sep; 357():491-497. PubMed ID: 29940467
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.).
    Park JH; Bolan N; Megharaj M; Naidu R
    J Environ Manage; 2011 Apr; 92(4):1115-20. PubMed ID: 21190789
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Lead phosphate minerals: solubility and dissolution by model and natural ligands.
    Martínez CE; Jacobson AR; Mcbride MB
    Environ Sci Technol; 2004 Nov; 38(21):5584-90. PubMed ID: 15575275
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Remediation of Lead-Contaminated Water by Red Yeast and Different Types of Phosphate.
    Tian D; Cheng X; Wang L; Hu J; Zhou N; Xia J; Xu M; Zhang L; Gao H; Ye X; Zhang C
    Front Bioeng Biotechnol; 2022; 10():775058. PubMed ID: 35387302
    [No Abstract]   [Full Text] [Related]  

  • 67. Reactivity, characterization of reaction products and immobilization of lead in water and sediments using quercetin pentaphosphate.
    Okello VA; Osonga FJ; Knipfing MT; Bushlyar V; Sadik OA
    Environ Sci Process Impacts; 2016 Mar; 18(3):306-13. PubMed ID: 26782777
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria.
    Chen H; Zhang J; Tang L; Su M; Tian D; Zhang L; Li Z; Hu S
    Environ Int; 2019 Jun; 127():395-401. PubMed ID: 30954726
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Lead immobilization assisted by fungal decomposition of organophosphate under various pH values.
    Zhang L; Song X; Shao X; Wu Y; Zhang X; Wang S; Pan J; Hu S; Li Z
    Sci Rep; 2019 Sep; 9(1):13353. PubMed ID: 31527665
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.
    Huang G; Su X; Rizwan MS; Zhu Y; Hu H
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16845-56. PubMed ID: 27197655
    [TBL] [Abstract][Full Text] [Related]  

  • 71. β-tricalcium phosphate enhanced biomineralization of Cd
    Zhang L; Zhang J; Zhou R; Si Y
    J Hazard Mater; 2024 Aug; 474():134624. PubMed ID: 38810579
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Immobilizing lead and copper in aqueous solution using microbial- and enzyme-induced carbonate precipitation.
    Wang L; Cheng WC; Xue ZF; Rahman MM; Xie YX; Hu W
    Front Bioeng Biotechnol; 2023; 11():1146858. PubMed ID: 37051271
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Phosphatase-mediated bioprecipitation of lead by soil fungi.
    Liang X; Kierans M; Ceci A; Hillier S; Gadd GM
    Environ Microbiol; 2016 Jan; 18(1):219-31. PubMed ID: 26235107
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Equilibrium solubility and dissolution rate of the lead phosphate chloropyromorphite.
    Xie L; Giammar DE
    Environ Sci Technol; 2007 Dec; 41(23):8050-5. PubMed ID: 18186336
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil.
    Rajapaksha AU; Ahmad M; Vithanage M; Kim KR; Chang JY; Lee SS; Ok YS
    Environ Geochem Health; 2015 Dec; 37(6):931-42. PubMed ID: 25794596
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Remediation of chromium, zinc, arsenic, lead and antimony contaminated acidic mine soil based on Phanerochaete chrysosporium induced phosphate precipitation.
    He N; Hu L; Jiang C; Li M
    Sci Total Environ; 2022 Dec; 850():157995. PubMed ID: 35964759
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Application methods affect phosphorus-induced lead immobilization from a contaminated soil.
    Yoon JK; Cao X; Ma LQ
    J Environ Qual; 2007; 36(2):373-8. PubMed ID: 17255624
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effective lead passivation in soil by bone char/CMC-stabilized FeS composite loading with phosphate-solubilizing bacteria.
    Qu J; Wei S; Liu Y; Zhang X; Jiang Z; Tao Y; Zhang G; Zhang B; Wang L; Zhang Y
    J Hazard Mater; 2022 Feb; 423(Pt A):127043. PubMed ID: 34479084
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Heavy metal-immobilizing bacteria increase the biomass and reduce the Cd and Pb uptake by pakchoi (Brassica chinensis L.) in heavy metal-contaminated soil.
    Han H; Cai H; Wang X; Hu X; Chen Z; Yao L
    Ecotoxicol Environ Saf; 2020 Jun; 195():110375. PubMed ID: 32200142
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Continuous and efficient immobilization of heavy metals by phosphate-mineralized bacterial consortium.
    Zhang K; Zhang D; Wu X; Xue Y
    J Hazard Mater; 2021 Aug; 416():125800. PubMed ID: 33836328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.