These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 38801957)
1. Enhanced biomass production and harvesting efficiency of Chlamydomonas reinhardtii under high-ammonium conditions by powdered oyster shell. Sui J; Cui Y; Zhang J; Li S; Zhao Y; Bai M; Feng G; Wu H Bioresour Technol; 2024 Jul; 403():130904. PubMed ID: 38801957 [TBL] [Abstract][Full Text] [Related]
2. Harvesting microalgae cultures with superabsorbent polymers: desulfurization of Chlamydomonas reinhardtii for hydrogen production. Martín del Campo JS; Patiño R Biotechnol Bioeng; 2013 Dec; 110(12):3227-34. PubMed ID: 23797775 [TBL] [Abstract][Full Text] [Related]
3. Increased urea availability promotes adjustments in C/N metabolism and lipid content without impacting growth in Chlamydomonas reinhardtii. Batista AD; Rosa RM; Machado M; Magalhães AS; Shalaguti BA; Gomes PF; Covell L; Vaz MGMV; Araújo WL; Nunes-Nesi A Metabolomics; 2019 Feb; 15(3):31. PubMed ID: 30830512 [TBL] [Abstract][Full Text] [Related]
4. Urea as a source of nitrogen and carbon leads to increased photosynthesis rates in Chlamydomonas reinhardtii under mixotrophy. Rosa RM; Machado M; Vaz MGMV; Lopes-Santos R; Nascimento AGD; Araújo WL; Nunes-Nesi A J Biotechnol; 2023 Apr; 367():20-30. PubMed ID: 36966923 [TBL] [Abstract][Full Text] [Related]
5. Experimental studies on zeta potential of flocculants for harvesting of algae. Pandey A; Pathak VV; Kothari R; Black PN; Tyagi VV J Environ Manage; 2019 Feb; 231():562-569. PubMed ID: 30388653 [TBL] [Abstract][Full Text] [Related]
6. Achieving pH control in microalgal cultures through fed-batch addition of stoichiometrically-balanced growth media. Scherholz ML; Curtis WR BMC Biotechnol; 2013 May; 13():39. PubMed ID: 23651806 [TBL] [Abstract][Full Text] [Related]
7. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Kong QX; Li L; Martinez B; Chen P; Ruan R Appl Biochem Biotechnol; 2010 Jan; 160(1):9-18. PubMed ID: 19507059 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production. Karpagam R; Preeti R; Ashokkumar B; Varalakshmi P Ecotoxicol Environ Saf; 2015 Nov; 121():253-7. PubMed ID: 25838071 [TBL] [Abstract][Full Text] [Related]
9. Optimization of Chlamydomonas reinhardtii cultivation with simultaneous CO Banerjee S; Ray A; Das D Sci Total Environ; 2021 Mar; 762():143080. PubMed ID: 33162147 [TBL] [Abstract][Full Text] [Related]
10. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Msanne J; Xu D; Konda AR; Casas-Mollano JA; Awada T; Cahoon EB; Cerutti H Phytochemistry; 2012 Mar; 75():50-9. PubMed ID: 22226037 [TBL] [Abstract][Full Text] [Related]
11. Monocultures vs. polyculture of microalgae: unveiling physiological changes to facilitate growth in ammonium rich-medium. Mollo L; Petrucciani A; Norici A Physiol Plant; 2024; 176(5):e14574. PubMed ID: 39400338 [TBL] [Abstract][Full Text] [Related]
12. Comparative Shotgun Proteomic Analysis of Wastewater-Cultured Microalgae: Nitrogen Sensing and Carbon Fixation for Growth and Nutrient Removal in Chlamydomonas reinhardtii. Patel AK; Huang EL; Low-Décarie E; Lefsrud MG J Proteome Res; 2015 Aug; 14(8):3051-67. PubMed ID: 25997359 [TBL] [Abstract][Full Text] [Related]
13. Resourceful application and mechanism of oyster shell-microalgae synergistic system:Sustainable treatment of harsh low carbon nitrogen ratio actual wastewater. Geng Y; Yang L; Lian CA; Pavlostathis SG; Qiu Z; Xiong Z; Liu Y; Li B; Hu J; Fan W; Luo X; Yu K Environ Res; 2024 Jul; 252(Pt 1):118775. PubMed ID: 38548250 [TBL] [Abstract][Full Text] [Related]
14. Effects of culture temperature and light regimes on biomass and lipid accumulation of Chlamydomonas reinhardtii under carbon-rich and nitrogen-limited conditions. Zheng S; Sun S; Zou S; Song J; Hua L; Chen H; Wang Q Bioresour Technol; 2024 May; 399():130613. PubMed ID: 38513922 [TBL] [Abstract][Full Text] [Related]
15. Application of Natural and Calcined Oyster Shell Powders to Improve Latosol and Manage Nitrogen Leaching. Yang X; Liu K; Wen Y; Huang Y; Zheng C Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36900930 [TBL] [Abstract][Full Text] [Related]
16. Response of energy microalgae Chlamydomonas reinhardtii to nitrogen and phosphorus stress. Wang Y; Yu J; Wang P; Deng S; Chang J; Ran Z Environ Sci Pollut Res Int; 2018 Feb; 25(6):5762-5770. PubMed ID: 29230652 [TBL] [Abstract][Full Text] [Related]
17. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Park WK; Yoo G; Moon M; Kim CW; Choi YE; Yang JW Appl Biochem Biotechnol; 2013 Nov; 171(5):1128-42. PubMed ID: 23881782 [TBL] [Abstract][Full Text] [Related]
18. Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. Beckmann J; Lehr F; Finazzi G; Hankamer B; Posten C; Wobbe L; Kruse O J Biotechnol; 2009 Jun; 142(1):70-7. PubMed ID: 19480949 [TBL] [Abstract][Full Text] [Related]
19. Production of biodiesel from Chlorella sp. enriched with oyster shell extracts. Choi CS; Choi WY; Kang DH; Lee HY Biomed Res Int; 2014; 2014():105728. PubMed ID: 24696841 [TBL] [Abstract][Full Text] [Related]
20. Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials. Lee CH; Lee DK; Ali MA; Kim PJ Waste Manag; 2008 Dec; 28(12):2702-8. PubMed ID: 18294833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]