These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38802237)

  • 1. Migration mechanism of atrazine in the simulated lake icing process at different freezing temperatures based on density function theory.
    Zhang Y; Lin H; Yu A; Wang X; Liu Y; Liu T; Zhao C; Mei R
    J Environ Sci (China); 2024 Oct; 144():45-54. PubMed ID: 38802237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Migration Pattern of Atrazine during the Processes of Water Freezing and Thawing.
    Zhang Y; Zhao C; Yu A; Zhao W; Ren F; Liu Y
    Toxics; 2022 Oct; 10(10):. PubMed ID: 36287883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Migration Rules of Malathion during Indoor Simulated Lake Freezing.
    Zhang Y; Wang X; Zhao W; Liu Y; Liu T; Yang P
    Toxics; 2023 Feb; 11(3):. PubMed ID: 36976987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorptive removal of noxious atrazine using graphene oxide nanosheets: Insights to process optimization, equilibrium, kinetics, and density functional theory calculations.
    Muthusaravanan S; Balasubramani K; Suresh R; Ganesh RS; Sivarajasekar N; Arul H; Rambabu K; Bharath G; Sathishkumar VE; Murthy AP; Banat F
    Environ Res; 2021 Sep; 200():111428. PubMed ID: 34107284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the distribution across media, migration, and related driving factors of fluoride in cold and arid lakes during the freezing period.
    Liu Y; Lu J; Liu T; Shi Z; Ren H; Mi J
    Environ Res; 2024 Mar; 244():117899. PubMed ID: 38109953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The migration law of magnesium ions during freezing and melting processes.
    Yan Z; Tongshuai L; Yuanqing T; Wanli Z; Fangyun R; Tongguo Z; Yucan L
    Environ Sci Pollut Res Int; 2022 Apr; 29(18):26675-26687. PubMed ID: 34855173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atrazine leaching through surface and subsurface of a tropical Oxisol.
    Langenbach T; Correia FV; Macrae A; Vargas EA; Campos TM
    J Environ Sci Health B; 2008; 43(3):214-8. PubMed ID: 18368540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative speciation model for the adsorption of organic pollutants on activated carbon.
    Grivé M; García D; Domènech C; Richard L; Rojo I; Martínez X; Rovira M
    Water Sci Technol; 2013; 68(6):1370-6. PubMed ID: 24056436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of atrazine and its phytoremediation by submerged macrophytes in lake sediments.
    Qu M; Li H; Li N; Liu G; Zhao J; Hua Y; Zhu D
    Chemosphere; 2017 Feb; 168():1515-1522. PubMed ID: 27932038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atrazine removal using chitin-cl-poly(acrylamide-co-itaconic acid) nanohydrogel: Isotherms and pH responsive nature.
    Sharma G; Thakur B; Kumar A; Sharma S; Naushad M; Stadler FJ
    Carbohydr Polym; 2020 Aug; 241():116258. PubMed ID: 32507180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen variations during the ice-on season in the eutrophic lakes.
    Yang T; Hei P; Song J; Zhang J; Zhu Z; Zhang Y; Yang J; Liu C; Jin J; Quan J
    Environ Pollut; 2019 Apr; 247():1089-1099. PubMed ID: 30823338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Herbicide sorption by immersed soils: stoichiometry and the law of mass action in support of predictive kinetics.
    Gamble DS
    Environ Sci Technol; 2009 Mar; 43(6):1930-4. PubMed ID: 19368194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of simulated sunlight on atrazine and metolachlor toxicity of surface waters.
    Lin YJ; Karuppiah M; Shaw A; Gupta G
    Ecotoxicol Environ Saf; 1999 May; 43(1):35-7. PubMed ID: 10330318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ice- air-water-NAPL multiphase model for simulating NAPL migration in subsurface system under freeze-thaw condition.
    Fu X; Kokkinaki A; Shi X; Yu J; Gong X; Zhang Y; Wu J
    J Contam Hydrol; 2023 Jul; 257():104214. PubMed ID: 37348416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into sorption and molecular transport of atrazine, testosterone, and progesterone onto polyamide microplastics in different aquatic matrices.
    Dias MA; Batista PR; Ducati LC; Montagner CC
    Chemosphere; 2023 Mar; 318():137949. PubMed ID: 36709842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate of atrazine and its relationship with environmental factors in distinctly different lake sediments associated with hydrophytes.
    Qu M; Liu G; Zhao J; Li H; Liu W; Yan Y; Feng X; Zhu D
    Environ Pollut; 2020 Jan; 256():113371. PubMed ID: 31672348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption and desorption of atrazine on carbon nanotubes.
    Yan XM; Shi BY; Lu JJ; Feng CH; Wang DS; Tang HX
    J Colloid Interface Sci; 2008 May; 321(1):30-8. PubMed ID: 18294649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of Pesticides Use on Pesticides Residues and Its Environmental Risk Assessment in Xingkai Lake(China)].
    Wang WQ; Xu X; Liu QZ; Lin LH; Lü J; Wang DH
    Huan Jing Ke Xue; 2024 May; 45(5):2678-2685. PubMed ID: 38629531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation and transformation of atrazine under catalyzed ozonation process with TiO2 as catalyst.
    Yang Y; Cao H; Peng P; Bo H
    J Hazard Mater; 2014 Aug; 279():444-51. PubMed ID: 25106044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atrazine retention and degradation in the vadose zone at a till plain site in central Indiana.
    Bayless ER
    Ground Water; 2001; 39(2):169-80. PubMed ID: 11286064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.