These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38802473)

  • 1. Contrasting mineralized and barren porphyries in the Zhongdian Arc, insights from biotite and apatite compositions and halogen fugacity.
    Pan Y; Dong G; Tsunogae T; Wang P; Li X; Dong P
    Sci Rep; 2024 May; 14(1):12110. PubMed ID: 38802473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Major, trace and rare earth elements of apatite and zircon U-Pb ages of ore-associated and barren granitoids from the Edong ore district, South China.
    Duan DF; Jiang SY
    Data Brief; 2018 Oct; 20():1587-1601. PubMed ID: 30258964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magmatic-hydrothermal fluid evolution of the tin-polymetallic metallogenic systems from the Weilasituo ore district, Northeast China.
    Gao X; Zhou Z; Breiter K; Mao J; Romer RL; Cook NJ; Holtz F
    Sci Rep; 2024 Feb; 14(1):3006. PubMed ID: 38321094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for temporal relationship between the late Mesozoic multistage Qianlishan granite complex and the Shizhuyuan W-Sn-Mo-Bi deposit, SE China.
    Liao Y; Zhao B; Zhang D; Danyushevsky LV; Li T; Wu M; Liu F
    Sci Rep; 2021 Mar; 11(1):5828. PubMed ID: 33712695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper sulfide deposition and remobilisation triggered by non-magmatic fluid incursion in the single-intrusion Tongchang porphyry system, SE China.
    Liu X; Richard A; Pironon J; Yang K
    Sci Rep; 2024 Jan; 14(1):2576. PubMed ID: 38297039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting magma chemistry in the Candelaria IOCG district caused by changing tectonic regimes.
    Romero R; Barra F; Reich M; Ojeda A; Tapia MJ; Del Real I; Simon A
    Sci Rep; 2024 May; 14(1):10793. PubMed ID: 38734754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-sulfur-rich, oxidised adakite magmas are likely porphyry copper progenitors.
    Leong TSJ; Mavrogenes JA; Arculus RJ
    Sci Rep; 2023 Mar; 13(1):5078. PubMed ID: 36977810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold endowments of porphyry deposits controlled by precipitation efficiency.
    Chiaradia M
    Nat Commun; 2020 Jan; 11(1):248. PubMed ID: 31937757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidized sulfur-rich arc magmas formed porphyry Cu deposits by 1.88 Ga.
    Meng X; Kleinsasser JM; Richards JP; Tapster SR; Jugo PJ; Simon AC; Kontak DJ; Robb L; Bybee GM; Marsh JH; Stern RA
    Nat Commun; 2021 Apr; 12(1):2189. PubMed ID: 33850122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of an Early-Middle Jurassic oxidized magmatic belt, south Gangdese, Tibet, and geological implications.
    Zou Y; Chen X; Huang W; Zhang J; Liang H; Xu J; Chen L
    Sci Bull (Beijing); 2017 Jun; 62(12):888-898. PubMed ID: 36659325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rapid change in magma plumbing taps porphyry copper deposit-forming magmas.
    Carter LC; Tapster SR; Williamson BJ; Buret Y; Selby D; Rollinson GK; Millar I; Parvaz DB
    Sci Rep; 2022 Oct; 12(1):17272. PubMed ID: 36241642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tempo of magma degassing and the genesis of porphyry copper deposits.
    Chelle-Michou C; Rottier B; Caricchi L; Simpson G
    Sci Rep; 2017 Jan; 7():40566. PubMed ID: 28079160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consistent trace element distribution and mercury isotopic signature between a shallow buried volcanic-hosted epithermal gold deposit and its weathered horizon.
    Yin R; Pan X; Deng C; Sun G; Kwon SY; Lepak RF; Hurley JP
    Environ Pollut; 2020 Apr; 259():113954. PubMed ID: 31952102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidized primary arc magmas: Constraints from Cu/Zr systematics in global arc volcanics.
    Zhao SY; Yang AY; Langmuir CH; Zhao TP
    Sci Adv; 2022 Mar; 8(12):eabk0718. PubMed ID: 35319995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new activity model for Mg-Al biotites determined through an integrated approach.
    Dachs E; Benisek A
    Contrib Mineral Petrol; 2019; 174(9):76. PubMed ID: 31496539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geochemistry and mineral chemistry of pelitic gneiss of Ikare area, southwestern Nigeria.
    Oziegbe EJ; Ocan OO; Costin G; Horváth P
    Heliyon; 2021 Dec; 7(12):e08543. PubMed ID: 34917816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bedrock Geology of the Thiel Mountains, Antarctica.
    Ford AB; Aaron JM
    Science; 1962 Sep; 137(3532):751-2. PubMed ID: 17732193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment.
    Chiaradia M; Caricchi L
    Sci Rep; 2017 Mar; 7():44523. PubMed ID: 28295045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging the subsurface architecture in porphyry copper deposits using local earthquake tomography.
    Comte D; Palma G; Vargas J; Calle-Gardella D; Peña M; García-Fierro S; D'Andres J; Roecker S; Pichott S
    Sci Rep; 2023 Apr; 13(1):6812. PubMed ID: 37100825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crustal thickening and endogenic oxidation of magmatic sulfur.
    Tang M; Lee CA; Ji WQ; Wang R; Costin G
    Sci Adv; 2020 Jul; 6(31):eaba6342. PubMed ID: 32832683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.