BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38802500)

  • 1. Numerical investigation of the effect of air layer on drag reduction in channel flow over a superhydrophobic surface.
    Nguyen HT; Lee SW; Ryu J; Kim M; Yoon J; Chang K
    Sci Rep; 2024 May; 14(1):12053. PubMed ID: 38802500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water Impalement Resistance and Drag Reduction of the Superhydrophobic Surface with Hydrophilic Strips.
    Cao Y; Liu X; Zhang L; Wu Y; You C; Li H; Duan H; Huang J; Lv P
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16973-16982. PubMed ID: 38502909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface.
    Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH
    Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drag Reduction Technology of Water Flow on Microstructured Surfaces: A Novel Perspective from Vortex Distributions and Densities.
    Liu C; Wang W; Hu X; Liu F
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drag reduction using bionic groove surface for underwater vehicles.
    Zheng S; Liang X; Li J; Liu Y; Tang J
    Front Bioeng Biotechnol; 2023; 11():1223691. PubMed ID: 37691898
    [No Abstract]   [Full Text] [Related]  

  • 6. Bioinspired surfaces for turbulent drag reduction.
    Golovin KB; Gose JW; Perlin M; Ceccio SL; Tuteja A
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low- and High-Drag Intermittencies in Turbulent Channel Flows.
    Agrawal R; Ng HC; Davis EA; Park JS; Graham MD; Dennis DJC; Poole RJ
    Entropy (Basel); 2020 Oct; 22(10):. PubMed ID: 33286895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles.
    Yu Z; Lin Z; Shao X; Wang LP
    Phys Rev E; 2017 Sep; 96(3-1):033102. PubMed ID: 29346864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Turbulent plane Poiseuille-Couette flow as a model for fluid slip over superhydrophobic surfaces.
    Nguyen QT; Papavassiliou DV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063015. PubMed ID: 24483565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single parameter can predict surfactant impairment of superhydrophobic drag reduction.
    Temprano-Coleto F; Smith SM; Peaudecerf FJ; Landel JR; Gibou F; Luzzatto-Fegiz P
    Proc Natl Acad Sci U S A; 2023 Jan; 120(3):e2211092120. PubMed ID: 36634141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theory for the slip and drag of superhydrophobic surfaces with surfactant.
    Landel JR; Peaudecerf FJ; Temprano-Coleto F; Gibou F; Goldstein RE; Luzzatto-Fegiz P
    J Fluid Mech; 2020 Jan; 883():. PubMed ID: 31806916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water.
    Jetly A; Vakarelski IU; Thoroddsen ST
    Soft Matter; 2018 Feb; 14(9):1608-1613. PubMed ID: 29411833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internal and External Flow over Laser-Textured Superhydrophobic Polytetrafluoroethylene (PTFE).
    Ahmmed KM; Patience C; Kietzig AM
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27411-27419. PubMed ID: 27649381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow.
    Zhang J; Yao Z; Hao P
    Phys Rev E; 2016 Nov; 94(5-1):053117. PubMed ID: 27967180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Roles of Riblet and Superhydrophobic Surfaces in Energy Saving Using a Spatial Correlation Analysis.
    Liu C; Wang W; Hu X; Fang J; Liu F
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the Performance of a Surface with Coupled Wettability Difference and Convex-Stripe Array for Improved Air Layer Stability.
    Qiao S; Cai C; Pan C; Liu Y; Zhang Q
    Langmuir; 2024 Mar; 40(9):4940-4952. PubMed ID: 38378438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces.
    Peaudecerf FJ; Landel JR; Goldstein RE; Luzzatto-Fegiz P
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7254-7259. PubMed ID: 28655848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral Analysis of the Slip-Length Model for Turbulence over Textured Superhydrophobic Surfaces.
    Fairhall CT; GarcĂ­a-Mayoral R
    Flow Turbul Combust; 2018; 100(4):961-978. PubMed ID: 30069146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct numerical simulation of low Reynolds number turbulent air-water transport in fuel cell flow channel.
    Niu Z; Wang R; Jiao K; Du Q; Yin Y
    Sci Bull (Beijing); 2017 Jan; 62(1):31-39. PubMed ID: 36718068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reynolds Stress Model for Viscoelastic Drag-Reducing Flow Induced by Polymer Solution.
    Wang Y
    Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31614659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.