These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38802500)

  • 21. Ultrafast Self-Healing Superhydrophobic Surface for Underwater Drag Reduction.
    Sun P; Feng X; Tian G; Zhang X; Chu J
    Langmuir; 2022 Sep; 38(35):10875-10885. PubMed ID: 36001007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effective Underwater Drag Reduction: A Butterfly Wing Scale-Inspired Superhydrophobic Surface.
    Chen Y; Hu Y; Zhang LW
    ACS Appl Mater Interfaces; 2024 May; 16(20):26954-26964. PubMed ID: 38713183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct Numerical Simulation of Gas-Liquid Drag-Reducing Cavity Flow by the VOSET Method.
    Wang Y; Wang Y; Cheng Z
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30960580
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexible conformable hydrophobized surfaces for turbulent flow drag reduction.
    Brennan JC; Geraldi NR; Morris RH; Fairhurst DJ; McHale G; Newton MI
    Sci Rep; 2015 May; 5():10267. PubMed ID: 25975704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Body surface adaptations to boundary-layer dynamics.
    Videler JJ
    Symp Soc Exp Biol; 1995; 49():1-20. PubMed ID: 8571218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability.
    Lee BJ; Zhang Z; Baek S; Kim S; Kim D; Yong K
    Sci Rep; 2016 Apr; 6():24653. PubMed ID: 27095674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-fidelity modelling of shark skin denticle flows: insights into drag generation mechanisms.
    Lloyd CJ; Mittal K; Dutta S; Dorrell RM; Peakall J; Keevil GM; Burns AD
    R Soc Open Sci; 2023 Feb; 10(2):220684. PubMed ID: 36756066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A bio-inspired two-stage bionic drag reduction method.
    Luo Z; Jia X; Zhu S; Zhao P; Zhang K; Guo H
    Rev Sci Instrum; 2024 Mar; 95(3):. PubMed ID: 38497834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fractal Model for Drag Reduction on Multiscale Nonwetting Rough Surfaces.
    Hatte S; Pitchumani R
    Langmuir; 2020 Dec; 36(47):14386-14402. PubMed ID: 33197195
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Turbulent Drag Reduction by a Near Wall Surface Tension Active Interface.
    Ahmadi S; Roccon A; Zonta F; Soldati A
    Flow Turbul Combust; 2018; 100(4):979-993. PubMed ID: 30069147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved Stable Drag Reduction of Controllable Laser-Patterned Superwetting Surfaces Containing Bioinspired Micro/Nanostructured Arrays.
    Rong W; Zhang H; Mao Z; Chen L; Liu X
    ACS Omega; 2022 Jan; 7(2):2049-2063. PubMed ID: 35071893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips.
    Hu H; Wen J; Bao L; Jia L; Song D; Song B; Pan G; Scaraggi M; Dini D; Xue Q; Zhou F
    Sci Adv; 2017 Sep; 3(9):e1603288. PubMed ID: 28879234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Turbulent Drag Reduction Using Anisotropic Permeable Substrates.
    Gómez-de-Segura G; Sharma A; García-Mayoral R
    Flow Turbul Combust; 2018; 100(4):995-1014. PubMed ID: 30069148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An energy-efficient pathway to turbulent drag reduction.
    Marusic I; Chandran D; Rouhi A; Fu MK; Wine D; Holloway B; Chung D; Smits AJ
    Nat Commun; 2021 Oct; 12(1):5805. PubMed ID: 34608161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing the impact of turbulent kinetic energy boundary conditions on turbulent flow simulations using computational fluid dynamics.
    Jung EC; Lee GH; Shim EB; Ha H
    Sci Rep; 2023 Sep; 13(1):14638. PubMed ID: 37670027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drag reduction on a patterned superhydrophobic surface.
    Truesdell R; Mammoli A; Vorobieff P; van Swol F; Brinker CJ
    Phys Rev Lett; 2006 Jul; 97(4):044504. PubMed ID: 16907578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water.
    Vakarelski IU; Chan DY; Thoroddsen ST
    Soft Matter; 2014 Aug; 10(31):5662-8. PubMed ID: 24849267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the mechanism of elasto-inertial turbulence.
    Dubief Y; Terrapon VE; Soria J
    Phys Fluids (1994); 2013 Nov; 25(11):110817. PubMed ID: 24170968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Roughness effects of diatomaceous slime fouling on turbulent boundary layer hydrodynamics.
    Murphy EAK; Barros JM; Schultz MP; Flack KA; Steppe CN; Reidenbach MA
    Biofouling; 2018 Oct; 34(9):976-988. PubMed ID: 30602310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superhydrophobic SLA 3D printed materials modified with nanoparticles biomimicking the hierarchical structure of a rice leaf.
    Barraza B; Olate-Moya F; Montecinos G; Ortega JH; Rosenkranz A; Tamburrino A; Palza H
    Sci Technol Adv Mater; 2022; 23(1):300-321. PubMed ID: 35557509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.