These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 38802617)
1. Green synthesis of N-rich carbon dot-derived crosslinked covalent organic nanomaterial for multipurpose chromatographic applications. Wei W; Zhao L; Si T; Zhang Y; Chen W; Tang S Mikrochim Acta; 2024 May; 191(6):345. PubMed ID: 38802617 [TBL] [Abstract][Full Text] [Related]
2. [Recent advances in carbon dots-based chromatographic separation materials]. Chen J; Qiu HD Se Pu; 2023 Oct; 41(10):825-834. PubMed ID: 37875405 [TBL] [Abstract][Full Text] [Related]
3. Ionic liquid/covalent organic framework/silica composite material: Green synthesis and chromatographic evaluation. Liu Y; Shang S; Wei W; Zhang Y; Chen W; Tang S Anal Chim Acta; 2023 Dec; 1283():341992. PubMed ID: 37977797 [TBL] [Abstract][Full Text] [Related]
4. Facile synthesis of a novel polymer/covalent organic framework@silica composite material in deep eutectic solvent for mixed-mode liquid chromatographic separation. Wei W; Zhao L; Liu Y; Zhang Y; Chen W; Tang S Mikrochim Acta; 2023 Dec; 191(1):35. PubMed ID: 38108891 [TBL] [Abstract][Full Text] [Related]
5. Preparation and application of a novel imine-linked covalent organic framework@silica composite for reversed-phase and hydrophilic interaction chromatographic separations. Wei W; Long H; Liu Y; Zhang Y; Chen W; Tang S Anal Chim Acta; 2023 Oct; 1276():341635. PubMed ID: 37573114 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of carbon dots-based covalent organic nanomaterial as stationary phase for open tubular capillary electrochromatography. Fu Y; Li Z; Hu C; Li Q; Chen Z J Chromatogr A; 2022 Aug; 1678():463343. PubMed ID: 35872537 [TBL] [Abstract][Full Text] [Related]
7. Exploring the potential applications of amphiphilic carbon dots based nanocomposite hydrogel in liquid chromatographic separations. Liu Q; Zhou K; Liu Y; Zhang Y; Chen W; Tang S Anal Chim Acta; 2024 Apr; 1299():342445. PubMed ID: 38499423 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and application of molecularly imprinted polymer doped carbon dots coated silica stationary phase. Chai P; Geng X; Zhu R; Wu W; Wang X; Li J; Fu L; Wang H; Liu W; Chen L; Song Z Anal Chim Acta; 2023 Sep; 1275():341611. PubMed ID: 37524474 [TBL] [Abstract][Full Text] [Related]
9. Preparation and characterization of carbon dot-decorated silica stationary phase in deep eutectic solvents for hydrophilic interaction chromatography. Zhang H; Qiao X; Cai T; Chen J; Li Z; Qiu H Anal Bioanal Chem; 2017 Mar; 409(9):2401-2410. PubMed ID: 28084509 [TBL] [Abstract][Full Text] [Related]
10. [One-pot synthesis of a poly(styrene-acrylic acid) copolymer-modified silica stationary phase and its applications in mixed-mode liquid chromatography]. Wang XQ; Cui J; Gu YM; Wang S; Zhou J; Wang SD Se Pu; 2023 Jul; 41(7):562-571. PubMed ID: 37387277 [TBL] [Abstract][Full Text] [Related]
11. Preparation and chromatographic evaluation of hydrophilic polymer brushes grafted-silica with post modification of silicon/carbon dots as a green liquid chromatography stationary phase. Bo C; Tang X; Li Y; Li Y; Zhao W; Guo S Mikrochim Acta; 2024 Jul; 191(8):495. PubMed ID: 39080110 [TBL] [Abstract][Full Text] [Related]
12. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification. J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480 [TBL] [Abstract][Full Text] [Related]
13. Tetraethylenepentamine-derived carbon dots and tetraethylenepentamine co-immobilized silica stationary phase for hydrophilic interaction chromatography. Cai T; Sun X; Chen J; Qiu H J Chromatogr A; 2023 Sep; 1707():464325. PubMed ID: 37639850 [TBL] [Abstract][Full Text] [Related]
14. Facile fabrication of silica@covalent organic polymers core-shell composites as the mixed-mode stationary phase for hydrophilic interaction/reversed-phase/ion-exchange chromatography. Chen J; Peng H; Zhang Z; Zhang Z; Ni R; Chen Y; Chen P; Peng J Talanta; 2021 Oct; 233():122524. PubMed ID: 34215027 [TBL] [Abstract][Full Text] [Related]
15. [Research progress on preparation and applications of covalent organic framework-based chromatographic stationary phases]. Liu J; Wu F; Gan L; Jin LY; Lin ZA Se Pu; 2023 Oct; 41(10):843-852. PubMed ID: 37875407 [TBL] [Abstract][Full Text] [Related]
16. One-pot fabrication and evaluation of β-ketoenamine covalent organic frameworks@silica composite microspheres as reversed-phase/hydrophilic interaction mixed-mode stationary phase for high performance liquid chromatography. Xia Y; Wang L; Liu Y; Liu J; Bai Q J Chromatogr A; 2024 Aug; 1728():464998. PubMed ID: 38795423 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen-doping to enhance the separation selectivity of glucose-based carbon dots-modified silica stationary phase for hydrophilic interaction chromatography. Yuan N; Chen J; Zhou H; Chand Ali M; Guan M; Qiu H Talanta; 2020 Oct; 218():121140. PubMed ID: 32797897 [TBL] [Abstract][Full Text] [Related]
18. [Recent advances in the use of graphene for sample preparation]. Feng J; Sun M; Feng Y; Xin X; Ding Y; Sun M Se Pu; 2022 Nov; 40(11):953-965. PubMed ID: 36351804 [TBL] [Abstract][Full Text] [Related]
19. Preparation and characterization of glucose-based covalent organic polymer coated silica as stationary phase for high-performance liquid chromatography. Gao L; Wang Y; Qin Y; Sun Y; He L; Zhang S; Zhao W J Chromatogr A; 2023 Mar; 1693():463876. PubMed ID: 36857980 [TBL] [Abstract][Full Text] [Related]
20. [Preparation and application of urushiol methacrylate-bonded silica liquid chromatographic stationary phase]. Zeng L; Cao Y; Yao X; Li G; Lei F; Shi B Se Pu; 2020 Nov; 38(11):1257-1262. PubMed ID: 34213095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]