These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38803165)

  • 1. Widefield Super-Resolution Infrared Spectroscopy and Imaging of Autofluorescent Biological Materials and Photosynthetic Microorganisms Using Fluorescence Detected Photothermal Infrared (FL-PTIR).
    Prater CB; Kjoller KJ; Stuart APD; Grigg DA; 'Limurn R; Gough KM
    Appl Spectrosc; 2024 Nov; 78(11):1208-1219. PubMed ID: 38803165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-Free Autofluorescence-Detected Mid-Infrared Photothermal Microscopy of Pharmaceutical Materials.
    Razumtcev A; Li M; Rong J; Teng CC; Pfluegl C; Taylor LS; Simpson GJ
    Anal Chem; 2022 May; 94(17):6512-6520. PubMed ID: 35446548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tutorial on optical photothermal infrared (O-PTIR) microscopy.
    Prater CB; Kansiz M; Cheng JX
    APL Photonics; 2024 Sep; 9(9):091101. PubMed ID: 39290719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique.
    Katzenmeyer AM; Aksyuk V; Centrone A
    Anal Chem; 2013 Feb; 85(4):1972-9. PubMed ID: 23363013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence-Detected Mid-Infrared Photothermal Microscopy.
    Li M; Razumtcev A; Yang R; Liu Y; Rong J; Geiger AC; Blanchard R; Pfluegl C; Taylor LS; Simpson GJ
    J Am Chem Soc; 2021 Jul; 143(29):10809-10815. PubMed ID: 34270255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating fungal decomposition of organic matter at sub-micrometer spatial scales using optical photothermal infrared (O-PTIR) microspectroscopy.
    Op De Beeck M; Troein C; Peterson C; Tunlid A; Persson P
    Appl Environ Microbiol; 2024 Feb; 90(2):e0148923. PubMed ID: 38289133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical photothermal infrared spectroscopy and discrete wavenumber imaging for high content screening of single cells.
    Shaik TA; Ramoji A; Milis N; Popp J; Krafft C
    Analyst; 2023 Nov; 148(22):5627-5635. PubMed ID: 37842964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding and Controlling Spatial Resolution, Sensitivity, and Surface Selectivity in Resonant-Mode Photothermal-Induced Resonance Spectroscopy.
    Quaroni L
    Anal Chem; 2020 Mar; 92(5):3544-3554. PubMed ID: 32023046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matrix/mineral ratio and domain size variation with bone tissue age: A photothermal infrared study.
    Ahn T; Jueckstock M; Mandair GS; Henderson J; Sinder BP; Kozloff KM; Banaszak Holl MM
    J Struct Biol; 2022 Sep; 214(3):107878. PubMed ID: 35781024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization Sensitive Photothermal Mid-Infrared Spectroscopic Imaging of Human Bone Marrow Tissue.
    Mankar R; Gajjela CC; Bueso-Ramos CE; Yin CC; Mayerich D; Reddy RK
    Appl Spectrosc; 2022 Apr; 76(4):508-518. PubMed ID: 35236126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Intact Eukaryotic Cells with Subcellular Spatial Resolution by Photothermal-Induced Resonance Infrared Spectroscopy and Imaging.
    Quaroni L
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31835358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Optical Photothermal Infrared (O-PTIR) and Raman Spectroscopy of Submicrometer Atmospheric Particles.
    Olson NE; Xiao Y; Lei Z; Ault AP
    Anal Chem; 2020 Jul; 92(14):9932-9939. PubMed ID: 32519841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Baking releases microplastics from polyethylene terephthalate bakeware as detected by optical photothermal infrared and quantum cascade laser infrared.
    Lin X; Gowen AA; Chen S; Xu JL
    Sci Total Environ; 2024 May; 924():171408. PubMed ID: 38432360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Optical Photothermal Infrared (O-PTIR) Spectroscopy for Assessment of Bone Composition at the Submicron Scale.
    Reiner E; Weston F; Pleshko N; Querido W
    Appl Spectrosc; 2023 Nov; 77(11):1311-1324. PubMed ID: 37774686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlative imaging to resolve molecular structures in individual cells: Substrate validation study for super-resolution infrared microspectroscopy.
    Paulus A; Yogarasa S; Kansiz M; Martinsson I; Gouras GK; Deierborg T; Engdahl A; Borondics F; Klementieva O
    Nanomedicine; 2022 Jul; 43():102563. PubMed ID: 35504462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation Matters: Polarization Dependent IR Spectroscopy of Collagen from Intact Tendon Down to the Single Fibril Level.
    Bakir G; Girouard BE; Wiens R; Mastel S; Dillon E; Kansiz M; Gough KM
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32961663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visible to Mid-IR Spectromicroscopy with Top-Down Illumination and Nanoscale (≈10 nm) Resolution.
    Jakob DS; Centrone A
    Anal Chem; 2022 Nov; 94(45):15564-15569. PubMed ID: 36321942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence-Detected Mid-Infrared Photothermal Microscopy.
    Zhang Y; Zong H; Zong C; Tan Y; Zhang M; Zhan Y; Cheng JX
    J Am Chem Soc; 2021 Aug; 143(30):11490-11499. PubMed ID: 34264654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-color infrared photothermal microscopy.
    Park C; Lim JM; Hong SC; Cho M
    Analyst; 2023 May; 148(10):2395-2402. PubMed ID: 37132454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast chemical imaging by widefield photothermal sensing of infrared absorption.
    Bai Y; Zhang D; Lan L; Huang Y; Maize K; Shakouri A; Cheng JX
    Sci Adv; 2019 Jul; 5(7):eaav7127. PubMed ID: 31334347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.