BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38803165)

  • 1. Widefield Super-Resolution Infrared Spectroscopy and Imaging of Autofluorescent Biological Materials and Photosynthetic Microorganisms Using Fluorescence Detected Photothermal Infrared (FL-PTIR).
    Prater CB; Kjoller KJ; Stuart APD; Grigg DA; 'Limurn R; Gough KM
    Appl Spectrosc; 2024 May; ():37028241256978. PubMed ID: 38803165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-Free Autofluorescence-Detected Mid-Infrared Photothermal Microscopy of Pharmaceutical Materials.
    Razumtcev A; Li M; Rong J; Teng CC; Pfluegl C; Taylor LS; Simpson GJ
    Anal Chem; 2022 May; 94(17):6512-6520. PubMed ID: 35446548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence-Detected Mid-Infrared Photothermal Microscopy.
    Li M; Razumtcev A; Yang R; Liu Y; Rong J; Geiger AC; Blanchard R; Pfluegl C; Taylor LS; Simpson GJ
    J Am Chem Soc; 2021 Jul; 143(29):10809-10815. PubMed ID: 34270255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding and Controlling Spatial Resolution, Sensitivity, and Surface Selectivity in Resonant-Mode Photothermal-Induced Resonance Spectroscopy.
    Quaroni L
    Anal Chem; 2020 Mar; 92(5):3544-3554. PubMed ID: 32023046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating fungal decomposition of organic matter at sub-micrometer spatial scales using optical photothermal infrared (O-PTIR) microspectroscopy.
    Op De Beeck M; Troein C; Peterson C; Tunlid A; Persson P
    Appl Environ Microbiol; 2024 Feb; 90(2):e0148923. PubMed ID: 38289133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique.
    Katzenmeyer AM; Aksyuk V; Centrone A
    Anal Chem; 2013 Feb; 85(4):1972-9. PubMed ID: 23363013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Optical Photothermal Infrared (O-PTIR) and Raman Spectroscopy of Submicrometer Atmospheric Particles.
    Olson NE; Xiao Y; Lei Z; Ault AP
    Anal Chem; 2020 Jul; 92(14):9932-9939. PubMed ID: 32519841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Baking releases microplastics from polyethylene terephthalate bakeware as detected by optical photothermal infrared and quantum cascade laser infrared.
    Lin X; Gowen AA; Chen S; Xu JL
    Sci Total Environ; 2024 May; 924():171408. PubMed ID: 38432360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical photothermal infrared spectroscopy and discrete wavenumber imaging for high content screening of single cells.
    Shaik TA; Ramoji A; Milis N; Popp J; Krafft C
    Analyst; 2023 Nov; 148(22):5627-5635. PubMed ID: 37842964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Optical Photothermal Infrared (O-PTIR) Spectroscopy for Assessment of Bone Composition at the Submicron Scale.
    Reiner E; Weston F; Pleshko N; Querido W
    Appl Spectrosc; 2023 Nov; 77(11):1311-1324. PubMed ID: 37774686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix/mineral ratio and domain size variation with bone tissue age: A photothermal infrared study.
    Ahn T; Jueckstock M; Mandair GS; Henderson J; Sinder BP; Kozloff KM; Banaszak Holl MM
    J Struct Biol; 2022 Sep; 214(3):107878. PubMed ID: 35781024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast chemical imaging by widefield photothermal sensing of infrared absorption.
    Bai Y; Zhang D; Lan L; Huang Y; Maize K; Shakouri A; Cheng JX
    Sci Adv; 2019 Jul; 5(7):eaav7127. PubMed ID: 31334347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orientation Matters: Polarization Dependent IR Spectroscopy of Collagen from Intact Tendon Down to the Single Fibril Level.
    Bakir G; Girouard BE; Wiens R; Mastel S; Dillon E; Kansiz M; Gough KM
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32961663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarization Sensitive Photothermal Mid-Infrared Spectroscopic Imaging of Human Bone Marrow Tissue.
    Mankar R; Gajjela CC; Bueso-Ramos CE; Yin CC; Mayerich D; Reddy RK
    Appl Spectrosc; 2022 Apr; 76(4):508-518. PubMed ID: 35236126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Intact Eukaryotic Cells with Subcellular Spatial Resolution by Photothermal-Induced Resonance Infrared Spectroscopy and Imaging.
    Quaroni L
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31835358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of Resonance Tracking for Assuring Reliability in Resonance Enhanced Photothermal Infrared Spectroscopy and Imaging.
    Ramer G; Reisenbauer F; Steindl B; Tomischko W; Lendl B
    Appl Spectrosc; 2017 Aug; 71(8):2013-2020. PubMed ID: 28756704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Photothermal Infrared Microspectroscopy Discriminates for the First Time Different Types of Lung Cells on Histopathology Glass Slides.
    Kansiz M; Dowling LM; Yousef I; Guaitella O; Borondics F; Sulé-Suso J
    Anal Chem; 2021 Aug; 93(32):11081-11088. PubMed ID: 34355885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence-Detected Mid-Infrared Photothermal Microscopy.
    Zhang Y; Zong H; Zong C; Tan Y; Zhang M; Zhan Y; Cheng JX
    J Am Chem Soc; 2021 Aug; 143(30):11490-11499. PubMed ID: 34264654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visible to Mid-IR Spectromicroscopy with Top-Down Illumination and Nanoscale (≈10 nm) Resolution.
    Jakob DS; Centrone A
    Anal Chem; 2022 Nov; 94(45):15564-15569. PubMed ID: 36321942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlative imaging to resolve molecular structures in individual cells: Substrate validation study for super-resolution infrared microspectroscopy.
    Paulus A; Yogarasa S; Kansiz M; Martinsson I; Gouras GK; Deierborg T; Engdahl A; Borondics F; Klementieva O
    Nanomedicine; 2022 Jul; 43():102563. PubMed ID: 35504462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.