BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38803524)

  • 1. Kinematics, kinetics, and new insights from a contemporary analysis of the first experiments to produce cervical facet dislocations in the laboratory.
    Quarrington RD; Bauze R; Jones CF
    JOR Spine; 2024 Jun; 7(2):e1336. PubMed ID: 38803524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanics of cervical facet dislocation.
    Ivancic PC; Pearson AM; Tominaga Y; Simpson AK; Yue JJ; Panjabi MM
    Traffic Inj Prev; 2008 Dec; 9(6):606-11. PubMed ID: 19058109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative evaluation of facet deflection, stiffness, strain and failure load during simulated cervical spine trauma.
    Quarrington RD; Costi JJ; Freeman BJC; Jones CF
    J Biomech; 2018 Apr; 72():116-124. PubMed ID: 29627133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a more robust lower neck compressive injury tolerance-an approach combining multiple test methodologies.
    Toomey DE; Yang KH; Yoganandan N; Pintar FA; Van Ee CA
    Traffic Inj Prev; 2013; 14(8):845-52. PubMed ID: 24073773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The instant axis of rotation influences facet forces at L5/S1 during flexion/extension and lateral bending.
    Rousseau MA; Bradford DS; Hadi TM; Pedersen KL; Lotz JC
    Eur Spine J; 2006 Mar; 15(3):299-307. PubMed ID: 16175392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of axial compression and distraction on cervical facet mechanics during anterior shear, flexion, axial rotation, and lateral bending motions.
    Quarrington RD; Costi JJ; Freeman BJC; Jones CF
    J Biomech; 2019 Jan; 83():205-213. PubMed ID: 30554817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Axial Compression and Distraction on Cervical Facet Cartilage Apposition During Shear and Bending Motions.
    Quarrington RD; Thompson-Bagshaw DW; Jones CF
    Ann Biomed Eng; 2022 May; 50(5):540-548. PubMed ID: 35254561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intervertebral kinematics of the cervical spine before, during, and after high-velocity low-amplitude manipulation.
    Anderst WJ; Gale T; LeVasseur C; Raj S; Gongaware K; Schneider M
    Spine J; 2018 Dec; 18(12):2333-2342. PubMed ID: 30142458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cervical facet joint kinematics during bilateral facet dislocation.
    Panjabi MM; Simpson AK; Ivancic PC; Pearson AM; Tominaga Y; Yue JJ
    Eur Spine J; 2007 Oct; 16(10):1680-8. PubMed ID: 17566792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomechanical assessment of soft-tissue damage in the cervical spine following a unilateral facet injury.
    Nadeau M; McLachlin SD; Bailey SI; Gurr KR; Dunning CE; Bailey CS
    J Bone Joint Surg Am; 2012 Nov; 94(21):e156. PubMed ID: 23138243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the Effect of Axial Compression and Distraction on Cervical Facet Mechanics During Supraphysiologic Anterior Shear.
    Quarrington RD; Costi JJ; Freeman BJC; Jones CF
    J Biomech Eng; 2021 Jun; 143(6):. PubMed ID: 33590841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between lower neck shear force and facet joint kinematics during automotive rear impacts.
    Stemper BD; Yoganandan N; Pintar FA; Maiman DJ
    Clin Anat; 2011 Apr; 24(3):319-26. PubMed ID: 21433081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disc arthroplasty design influences intervertebral kinematics and facet forces.
    Rousseau MA; Bradford DS; Bertagnoli R; Hu SS; Lotz JC
    Spine J; 2006; 6(3):258-66. PubMed ID: 16651219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of age and injury mechanism on cervical spine injury tolerance from head contact loading.
    Yoganandan N; Chirvi S; Voo L; Pintar FA; Banerjee A
    Traffic Inj Prev; 2018 Feb; 19(2):165-172. PubMed ID: 28738168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of graft size on spinal instability with anterior cervical plate fixation following in vitro flexion-distraction injuries.
    Yao R; McLachlin SD; Rasoulinejad P; Gurr KR; Siddiqi F; Dunning CE; Bailey CS
    Spine J; 2016 Apr; 16(4):523-9. PubMed ID: 26282105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of lateral eccentricity on failure loads, kinematics, and canal occlusions of the cervical spine in axial loading.
    Van Toen C; Melnyk AD; Street J; Oxland TR; Cripton PA
    J Biomech; 2014 Mar; 47(5):1164-72. PubMed ID: 24411098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical comparison of single- and two-level cervical arthroplasty versus arthrodesis: effect on adjacent-level spinal kinematics.
    Cunningham BW; Hu N; Zorn CM; McAfee PC
    Spine J; 2010 Apr; 10(4):341-9. PubMed ID: 20362252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematics of the Cervical Spine After Unilateral Facet Fracture: An In Vitro Cadaver Study.
    Caravaggi P; Chen L; Uko L; Zorrilla A; Hauser S; Vives MJ
    Spine (Phila Pa 1976); 2017 Sep; 42(18):E1042-E1049. PubMed ID: 28146029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of acceleration level on lumbar spine injuries in military populations.
    Yoganandan N; Stemper BD; Baisden JL; Pintar FA; Paskoff GR; Shender BS
    Spine J; 2015 Jun; 15(6):1318-24. PubMed ID: 24374098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gender- and region-dependent local facet joint kinematics in rear impact: implications in whiplash injury.
    Stemper BD; Yoganandan N; Pintar FA
    Spine (Phila Pa 1976); 2004 Aug; 29(16):1764-71. PubMed ID: 15303020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.