These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 38804084)
21. Spheroscope: A custom-made miniaturized microscope for tracking tumour spheroids in microfluidic devices. Rodríguez-Pena A; Uranga-Solchaga J; Ortiz-de-Solórzano C; Cortés-Domínguez I Sci Rep; 2020 Feb; 10(1):2779. PubMed ID: 32066786 [TBL] [Abstract][Full Text] [Related]
22. Characterising a PDMS based 3D cell culturing microfluidic platform for screening chemotherapeutic drug cytotoxic activity. Khot MI; Levenstein MA; de Boer GN; Armstrong G; Maisey T; Svavarsdottir HS; Andrew H; Perry SL; Kapur N; Jayne DG Sci Rep; 2020 Sep; 10(1):15915. PubMed ID: 32985610 [TBL] [Abstract][Full Text] [Related]
23. iTRAQ Quantitative Proteomic Profiling and MALDI-MSI of Colon Cancer Spheroids Treated with Combination Chemotherapies in a 3D Printed Fluidic Device. LaBonia GJ; Ludwig KR; Mousseau CB; Hummon AB Anal Chem; 2018 Jan; 90(2):1423-1430. PubMed ID: 29227110 [TBL] [Abstract][Full Text] [Related]
24. High-content assays for characterizing the viability and morphology of 3D cancer spheroid cultures. Sirenko O; Mitlo T; Hesley J; Luke S; Owens W; Cromwell EF Assay Drug Dev Technol; 2015 Sep; 13(7):402-14. PubMed ID: 26317884 [TBL] [Abstract][Full Text] [Related]
25. Robotic printing and drug testing of 384-well tumor spheroids. Ham SL; Thakuri PS; Tavana H Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2183-6. PubMed ID: 26736723 [TBL] [Abstract][Full Text] [Related]
26. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Yu L; Chen MC; Cheung KC Lab Chip; 2010 Sep; 10(18):2424-32. PubMed ID: 20694216 [TBL] [Abstract][Full Text] [Related]
27. On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network. Kim C; Bang JH; Kim YE; Lee SH; Kang JY Lab Chip; 2012 Oct; 12(20):4135-42. PubMed ID: 22864534 [TBL] [Abstract][Full Text] [Related]
28. A microfluidic platform for chemoresistive testing of multicellular pleural cancer spheroids. Ruppen J; Cortes-Dericks L; Marconi E; Karoubi G; Schmid RA; Peng R; Marti TM; Guenat OT Lab Chip; 2014 Mar; 14(6):1198-205. PubMed ID: 24496222 [TBL] [Abstract][Full Text] [Related]
29. A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids. Markovitz-Bishitz Y; Tauber Y; Afrimzon E; Zurgil N; Sobolev M; Shafran Y; Deutsch A; Howitz S; Deutsch M Biomaterials; 2010 Nov; 31(32):8436-44. PubMed ID: 20692698 [TBL] [Abstract][Full Text] [Related]
30. A novel design of microfluidic platform for metronomic combinatorial chemotherapy drug screening based on 3D tumor spheroid model. Sankar S; Mehta V; Ravi S; Sharma CS; Rath SN Biomed Microdevices; 2021 Oct; 23(4):50. PubMed ID: 34596764 [TBL] [Abstract][Full Text] [Related]
31. Automated Uniform Spheroid Generation Platform for High Throughput Drug Screening Process. Pong KCC; Lai YS; Wong RCH; Lee ACK; Chow SCT; Lam JCW; Ho HP; Wong CTT Biosensors (Basel); 2024 Aug; 14(8):. PubMed ID: 39194621 [TBL] [Abstract][Full Text] [Related]
32. High-throughput microfluidics for evaluating microbubble enhanced delivery of cancer therapeutics in spheroid cultures. Bourn MD; Batchelor DVB; Ingram N; McLaughlan JR; Coletta PL; Evans SD; Peyman SA J Control Release; 2020 Oct; 326():13-24. PubMed ID: 32562855 [TBL] [Abstract][Full Text] [Related]
33. Real-Time Apoptosis and Viability High-Throughput Screening of 3D Multicellular Tumor Spheroids Using the Celigo Image Cytometer. Kessel S; Cribbes S; Bonasu S; Qiu J; Chan LL SLAS Discov; 2018 Feb; 23(2):202-210. PubMed ID: 28915356 [TBL] [Abstract][Full Text] [Related]
34. Microfluidic co-culture of liver tumor spheroids with stellate cells for the investigation of drug resistance and intercellular interactions. Chen Y; Sun W; Kang L; Wang Y; Zhang M; Zhang H; Hu P Analyst; 2019 Jul; 144(14):4233-4240. PubMed ID: 31210202 [TBL] [Abstract][Full Text] [Related]
35. Longitudinal, label-free, quantitative tracking of cell death and viability in a 3D tumor model with OCT. Jung Y; Klein OJ; Wang H; Evans CL Sci Rep; 2016 Jun; 6():27017. PubMed ID: 27248849 [TBL] [Abstract][Full Text] [Related]
36. Next-generation 3D tumor modeling: A microfluidic platform with biocompatible red carbon dots for live cell imaging in co-cultured elongated spheroid tumor model. Pournemat P; Bagheri Z; Behroodi E; Soleimani M; Latifi H; Mayadani S; Yaghoubi-Avini M Biosens Bioelectron; 2024 Dec; 266():116684. PubMed ID: 39216206 [TBL] [Abstract][Full Text] [Related]
37. Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening. Chen Y; Gao D; Liu H; Lin S; Jiang Y Anal Chim Acta; 2015 Oct; 898():85-92. PubMed ID: 26526913 [TBL] [Abstract][Full Text] [Related]
38. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening. Chen MC; Gupta M; Cheung KC Biomed Microdevices; 2010 Aug; 12(4):647-54. PubMed ID: 20237849 [TBL] [Abstract][Full Text] [Related]
39. Thermo-responsive polymer aided spheroid culture in cryogel based platform for high throughput drug screening. Sarkar J; Kumar A Analyst; 2016 Apr; 141(8):2553-67. PubMed ID: 27027476 [TBL] [Abstract][Full Text] [Related]
40. Establishment of Microfluidic Spheroid Cultures for Biomedical Applications. Kwapiszewska K Methods Mol Biol; 2018; 1771():213-224. PubMed ID: 29633216 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]