These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 38804084)
41. A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening. Kwapiszewska K; Michalczuk A; Rybka M; Kwapiszewski R; Brzózka Z Lab Chip; 2014 Jun; 14(12):2096-104. PubMed ID: 24800721 [TBL] [Abstract][Full Text] [Related]
42. Automated spheroid generation, drug application and efficacy screening using a deep learning classification: a feasibility study. Benning L; Peintner A; Finkenzeller G; Peintner L Sci Rep; 2020 Jul; 10(1):11071. PubMed ID: 32632214 [TBL] [Abstract][Full Text] [Related]
43. THz Spectroscopy for a Rapid and Label-Free Cell Viability Assay in a Microfluidic Chip Based on an Optical Clearing Agent. Yang K; Yang X; Zhao X; Lamy de la Chapelle M; Fu W Anal Chem; 2019 Jan; 91(1):785-791. PubMed ID: 30335363 [TBL] [Abstract][Full Text] [Related]
44. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening. Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118 [TBL] [Abstract][Full Text] [Related]
45. Generation of Multicellular Tumor Spheroids with Microwell-Based Agarose Scaffolds for Drug Testing. Gong X; Lin C; Cheng J; Su J; Zhao H; Liu T; Wen X; Zhao P PLoS One; 2015; 10(6):e0130348. PubMed ID: 26090664 [TBL] [Abstract][Full Text] [Related]
46. A 1536-Well 3D Viability Assay to Assess the Cytotoxic Effect of Drugs on Spheroids. Madoux F; Tanner A; Vessels M; Willetts L; Hou S; Scampavia L; Spicer TP SLAS Discov; 2017 Jun; 22(5):516-524. PubMed ID: 28346088 [TBL] [Abstract][Full Text] [Related]
47. Multi-size spheroid formation using microfluidic funnels. Marimuthu M; Rousset N; St-Georges-Robillard A; Lateef MA; Ferland M; Mes-Masson AM; Gervais T Lab Chip; 2018 Jan; 18(2):304-314. PubMed ID: 29211088 [TBL] [Abstract][Full Text] [Related]
48. Development of an in vitro tumor spheroid culture model amenable to high-throughput testing of potential anticancer nanotherapeutics. Solomon MA; Lemera J; D'Souza GG J Liposome Res; 2016 Sep; 26(3):246-60. PubMed ID: 26780923 [TBL] [Abstract][Full Text] [Related]
49. Multiparametric Analysis of Oncology Drug Screening with Aqueous Two-Phase Tumor Spheroids. Shahi Thakuri P; Ham SL; Luker GD; Tavana H Mol Pharm; 2016 Nov; 13(11):3724-3735. PubMed ID: 27653969 [TBL] [Abstract][Full Text] [Related]
50. 3-Dimensional culture systems for anti-cancer compound profiling and high-throughput screening reveal increases in EGFR inhibitor-mediated cytotoxicity compared to monolayer culture systems. Howes AL; Richardson RD; Finlay D; Vuori K PLoS One; 2014; 9(9):e108283. PubMed ID: 25247711 [TBL] [Abstract][Full Text] [Related]
51. Pneumatic extrusion bioprinting-based high throughput fabrication of a melanoma 3D cell culture model for anti-cancer drug screening. de Villiers M; Kotzé AF; du Plessis LH Biomed Mater; 2024 Aug; 19(5):. PubMed ID: 39025118 [TBL] [Abstract][Full Text] [Related]
52. In vitro co-culture model of medulloblastoma and human neural stem cells for drug delivery assessment. Ivanov DP; Parker TL; Walker DA; Alexander C; Ashford MB; Gellert PR; Garnett MC J Biotechnol; 2015 Jul; 205():3-13. PubMed ID: 25592050 [TBL] [Abstract][Full Text] [Related]
53. Formation of size-controllable tumour spheroids using a microfluidic pillar array (μFPA) device. Lim W; Hoang HH; You D; Han J; Lee JE; Kim S; Park S Analyst; 2018 Nov; 143(23):5841-5848. PubMed ID: 30379148 [TBL] [Abstract][Full Text] [Related]
54. Transitioning from multi-phase to single-phase microfluidics for long-term culture and treatment of multicellular spheroids. McMillan KS; Boyd M; Zagnoni M Lab Chip; 2016 Sep; 16(18):3548-57. PubMed ID: 27477673 [TBL] [Abstract][Full Text] [Related]
55. Robotic production of cancer cell spheroids with an aqueous two-phase system for drug testing. Ham SL; Atefi E; Fyffe D; Tavana H J Vis Exp; 2015 Apr; (98):e52754. PubMed ID: 25939084 [TBL] [Abstract][Full Text] [Related]
57. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip. Lei KF; Wu MH; Hsu CW; Chen YD Biosens Bioelectron; 2014 Jan; 51():16-21. PubMed ID: 23920091 [TBL] [Abstract][Full Text] [Related]
58. Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device. Patra B; Peng CC; Liao WH; Lee CH; Tung YC Sci Rep; 2016 Feb; 6():21061. PubMed ID: 26877244 [TBL] [Abstract][Full Text] [Related]
59. Single and Combination Drug Screening with Aqueous Biphasic Tumor Spheroids. Shahi Thakuri P; Tavana H SLAS Discov; 2017 Jun; 22(5):507-515. PubMed ID: 28324660 [TBL] [Abstract][Full Text] [Related]
60. Physical Characterization of Colorectal Cancer Spheroids and Evaluation of NK Cell Infiltration Through a Flow-Based Analysis. Sargenti A; Musmeci F; Bacchi F; Delprete C; Cristaldi DA; Cannas F; Bonetti S; Pasqua S; Gazzola D; Costa D; Villa F; Zocchi MR; Poggi A Front Immunol; 2020; 11():564887. PubMed ID: 33424829 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]