These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38804175)

  • 1. Advancing Fine Branch Biomass Estimation with Lidar and Structural Models.
    Millan M; Bonnet A; Dauzat J; Vezy R
    Ann Bot; 2024 May; ():. PubMed ID: 38804175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harvesting tree biomass at the stand level to assess the accuracy of field and airborne biomass estimation in savannas.
    Colgan MS; Asner GP; Swemmer T
    Ecol Appl; 2013 Jul; 23(5):1170-84. PubMed ID: 23967584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic Branch-Leaf Segmentation and Leaf Phenotypic Parameter Estimation of Pear Trees Based on Three-Dimensional Point Clouds.
    Li H; Wu G; Tao S; Yin H; Qi K; Zhang S; Guo W; Ninomiya S; Mu Y
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tropical tree size-frequency distributions from airborne lidar.
    Ferraz A; Saatchi SS; Longo M; Clark DB
    Ecol Appl; 2020 Oct; 30(7):e02154. PubMed ID: 32347996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into large tropical tree mass and structure from direct harvest and terrestrial lidar.
    Burt A; Boni Vicari M; da Costa ACL; Coughlin I; Meir P; Rowland L; Disney M
    R Soc Open Sci; 2021 Feb; 8(2):201458. PubMed ID: 33972856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology].
    Liu F; Tan C; Lei PF
    Ying Yong Sheng Tai Xue Bao; 2014 Nov; 25(11):3229-36. PubMed ID: 25898621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-Ground Vineyard Reconstruction Using a LiDAR-Based Automated System.
    Moreno H; Valero C; Bengochea-Guevara JM; Ribeiro Á; Garrido-Izard M; Andújar D
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forest above-ground volume assessments with terrestrial laser scanning: a ground-truth validation experiment in temperate, managed forests.
    Demol M; Calders K; Verbeeck H; Gielen B
    Ann Bot; 2021 Oct; 128(6):805-819. PubMed ID: 34472592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating urban above ground biomass with multi-scale LiDAR.
    Wilkes P; Disney M; Vicari MB; Calders K; Burt A
    Carbon Balance Manag; 2018 Jun; 13(1):10. PubMed ID: 29943069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Terrestrial LiDAR point cloud dataset of cocoa trees grown in agroforestry systems in Cameroon.
    Peynaud E; Momo Takoudjou S
    Data Brief; 2024 Apr; 53():110108. PubMed ID: 38348320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved estimation of aboveground biomass of regional coniferous forests integrating UAV-LiDAR strip data, Sentinel-1 and Sentinel-2 imageries.
    Wang Y; Jia X; Chai G; Lei L; Zhang X
    Plant Methods; 2023 Jun; 19(1):65. PubMed ID: 37391772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR.
    Garcia M; Saatchi S; Ferraz A; Silva CA; Ustin S; Koltunov A; Balzter H
    Carbon Balance Manag; 2017 Dec; 12(1):4. PubMed ID: 28413848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Estimation method of urban green space living vegetation volume based on backpack light detection and ranging].
    Li XX; Tang LY; Peng W; Chen JX; Ma X
    Ying Yong Sheng Tai Xue Bao; 2022 Oct; 33(10):2777-2784. PubMed ID: 36384614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring tree diameter using a LiDAR-equipped smartphone: a comparison of smartphone- and caliper-based DBH.
    Gülci S; Yurtseven H; Akay AO; Akgul M
    Environ Monit Assess; 2023 May; 195(6):678. PubMed ID: 37191833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [An automatic extraction algorithm for individual tree crown projection area and volume based on 3D point cloud data].
    Xu WH; Feng ZK; Su ZF; Xu H; Jiao YQ; Deng O
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Feb; 34(2):465-71. PubMed ID: 24822422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of LiDAR point density, sampling size and height threshold on estimation accuracy of crop biophysical parameters.
    Luo S; Chen JM; Wang C; Xi X; Zeng H; Peng D; Li D
    Opt Express; 2016 May; 24(11):11578-93. PubMed ID: 27410085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the mechanical and morphological rationality of tree branch structure based on 3D point cloud analysis and the finite element method.
    Tsugawa S; Teratsuji K; Okura F; Noshita K; Tateno M; Zhang J; Demura T
    Sci Rep; 2022 Mar; 12(1):4054. PubMed ID: 35260741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating stem volume and biomass of Pinus koraiensis using LiDAR data.
    Kwak DA; Lee WK; Cho HK; Lee SH; Son Y; Kafatos M; Kim SR
    J Plant Res; 2010 Jul; 123(4):421-32. PubMed ID: 20182905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of aboveground biomass in alpine forests: a semi-empirical approach considering canopy transparency derived from airborne LiDAR data.
    Jochem A; Hollaus M; Rutzinger M; Höfle B
    Sensors (Basel); 2011; 11(1):278-95. PubMed ID: 22346577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the integration of LiDAR and field data for riparian biomass estimation.
    Latella M; Raimondo T; Belcore E; Salerno L; Camporeale C
    J Environ Manage; 2022 Nov; 322():116046. PubMed ID: 36081260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.