These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38804175)

  • 21. A new method to estimate branch biomass from terrestrial laser scanning data by bridging tree structure models.
    Hu M; Pitkänen TP; Minunno F; Tian X; Lehtonen A; Mäkelä A
    Ann Bot; 2021 Oct; 128(6):737-752. PubMed ID: 33693489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Individual tree segmentation of airborne and UAV LiDAR point clouds based on the watershed and optimized connection center evolution clustering.
    Li Y; Xie D; Wang Y; Jin S; Zhou K; Zhang Z; Li W; Zhang W; Mu X; Yan G
    Ecol Evol; 2023 Jul; 13(7):e10297. PubMed ID: 37456074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Terrestrial LiDAR-derived non-destructive woody biomass estimates for 10 hardwood species in Virginia.
    Stovall AEL; Anderson-Teixeira KJ; Shugart HH
    Data Brief; 2018 Aug; 19():1560-1569. PubMed ID: 30229029
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Edge effects on tree architecture exacerbate biomass loss of fragmented Amazonian forests.
    Nunes MH; Vaz MC; Camargo JLC; Laurance WF; de Andrade A; Vicentini A; Laurance S; Raumonen P; Jackson T; Zuquim G; Wu J; Peñuelas J; Chave J; Maeda EE
    Nat Commun; 2023 Dec; 14(1):8129. PubMed ID: 38097604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tree parameter extraction in
    Jiang Z; Chen J; Tang LY; Yu C; Xie RG; Huang DL; Su SD
    Ying Yong Sheng Tai Xue Bao; 2024 Feb; 35(2):321-329. PubMed ID: 38523088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. UAV hyperspectral combined with LiDAR to estimate chlorophyll content at the stand and individual tree scales.
    Yang T; Yu Y; Yang XG; DU HX
    Ying Yong Sheng Tai Xue Bao; 2023 Aug; 34(8):2101-2112. PubMed ID: 37681374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstruction and analysis of a deciduous sapling using digital photographs or terrestrial-LiDAR technology.
    Delagrange S; Rochon P
    Ann Bot; 2011 Oct; 108(6):991-1000. PubMed ID: 21515607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimation of maize above-ground biomass based on stem-leaf separation strategy integrated with LiDAR and optical remote sensing data.
    Zhu Y; Zhao C; Yang H; Yang G; Han L; Li Z; Feng H; Xu B; Wu J; Lei L
    PeerJ; 2019; 7():e7593. PubMed ID: 31576235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dataset on woody aboveground biomass, disturbance losses, and wood density from an African savanna ecosystem.
    Kindermann L; Dobler M; Niedeggen D; Fabiano EC; Linstädter A
    Data Brief; 2022 Jun; 42():108155. PubMed ID: 35515994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Comparison of artificial neural network with compatible biomass model for predicting aboveground biomass of individual tree].
    Liang RT; Wang YF; Qiu SY; Sun YJ; Xie YH
    Ying Yong Sheng Tai Xue Bao; 2022 Jan; 33(1):9-16. PubMed ID: 35224920
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A 3D approach to model the taper of irregular tree stems: making plots biomass estimates comparable in tropical forests.
    Bauwens S; Ploton P; Fayolle A; Ligot G; Loumeto JJ; Lejeune P; Gourlet-Fleury S
    Ecol Appl; 2021 Dec; 31(8):e02451. PubMed ID: 34519125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PypeTree: a tool for reconstructing tree perennial tissues from point clouds.
    Delagrange S; Jauvin C; Rochon P
    Sensors (Basel); 2014 Mar; 14(3):4271-89. PubMed ID: 24599190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Above-ground biomass references for urban trees from terrestrial laser scanning data.
    Kükenbrink D; Gardi O; Morsdorf F; Thürig E; Schellenberger A; Mathys L
    Ann Bot; 2021 Oct; 128(6):709-724. PubMed ID: 33693550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+.
    Leitold V; Keller M; Morton DC; Cook BD; Shimabukuro YE
    Carbon Balance Manag; 2015 Dec; 10(1):3. PubMed ID: 25685178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved allometric models to estimate the aboveground biomass of tropical trees.
    Chave J; Réjou-Méchain M; Búrquez A; Chidumayo E; Colgan MS; Delitti WB; Duque A; Eid T; Fearnside PM; Goodman RC; Henry M; Martínez-Yrízar A; Mugasha WA; Muller-Landau HC; Mencuccini M; Nelson BW; Ngomanda A; Nogueira EM; Ortiz-Malavassi E; Pélissier R; Ploton P; Ryan CM; Saldarriaga JG; Vieilledent G
    Glob Chang Biol; 2014 Oct; 20(10):3177-90. PubMed ID: 24817483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robust Normal Estimation for 3D LiDAR Point Clouds in Urban Environments.
    Zhao R; Pang M; Liu C; Zhang Y
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30871057
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function.
    Antonarakis AS; Saatchi SS; Chazdon RL; Moorcroft PR
    Ecol Appl; 2011 Jun; 21(4):1120-37. PubMed ID: 21774418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Total and component forest aboveground biomass inversion via LiDAR-derived features and machine learning algorithms.
    Ma J; Zhang W; Ji Y; Huang J; Huang G; Wang L
    Front Plant Sci; 2023; 14():1258521. PubMed ID: 37954998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detecting shrub encroachment in seminatural grasslands using UAS LiDAR.
    Madsen B; Treier UA; Zlinszky A; Lucieer A; Normand S
    Ecol Evol; 2020 Jun; 10(11):4876-4902. PubMed ID: 32551068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring individual tree-based change with airborne lidar.
    Duncanson L; Dubayah R
    Ecol Evol; 2018 May; 8(10):5079-5089. PubMed ID: 29876083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.