These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44 related articles for article (PubMed ID: 3880485)
1. Albumin microspheres as delivery systems for photodynamic drugs: physico-chemical studies and their implications for in vivo situations. Margalit R; Silbiger E J Microencapsul; 1985; 2(3):183-96. PubMed ID: 3880485 [TBL] [Abstract][Full Text] [Related]
2. Changing the pH of the external aqueous phase may modulate protein entrapment and delivery from poly(lactide-co-glycolide) microspheres prepared by a w/o/w solvent evaporation method. Leo E; Pecquet S; Rojas J; Couvreur P; Fattal E J Microencapsul; 1998; 15(4):421-30. PubMed ID: 9651864 [TBL] [Abstract][Full Text] [Related]
3. Preparation and characterization of temperature-sensitive poly(N-isopropylacrylamide)-b-poly(D,L-lactide) microspheres for protein delivery. Liu SQ; Yang YY; Liu XM; Tong YW Biomacromolecules; 2003; 4(6):1784-93. PubMed ID: 14606909 [TBL] [Abstract][Full Text] [Related]
4. Influence of formulation variables on the in-vitro release of albumin from biodegradable microparticulate systems. Igartua M; Hernández RM; Esquisabel A; Gascon AR; Calvo MB; Pedraz JL J Microencapsul; 1997; 14(3):349-56. PubMed ID: 9147284 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of nano-fibrous collagen microspheres for protein delivery and effects of photochemical crosslinking on release kinetics. Chan OC; So KF; Chan BP J Control Release; 2008 Jul; 129(2):135-43. PubMed ID: 18514352 [TBL] [Abstract][Full Text] [Related]
6. Micromeritics and release behaviours of cellulose acetate butyrate microspheres containing theophylline prepared by emulsion solvent evaporation and emulsion non-solvent addition method. Jelvehgari M; Atapour F; Nokhodchi A Arch Pharm Res; 2009 Jul; 32(7):1019-28. PubMed ID: 19641883 [TBL] [Abstract][Full Text] [Related]
7. [New approaches for encapsulation of peptides into poly(lactic/glycolic acid) microspheres]. Blanco-Prieto MJ; Fattal E; Puisieux F; Couvreur P Ann Pharm Fr; 1998; 56(6):256-63. PubMed ID: 9872012 [TBL] [Abstract][Full Text] [Related]
8. Effect of mean diameter and polydispersity of PLG microspheres on drug release: experiment and theory. Berchane NS; Carson KH; Rice-Ficht AC; Andrews MJ Int J Pharm; 2007 Jun; 337(1-2):118-26. PubMed ID: 17289316 [TBL] [Abstract][Full Text] [Related]
9. The effect of formulation variables on the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method. Hamishehkar H; Emami J; Najafabadi AR; Gilani K; Minaiyan M; Mahdavi H; Nokhodchi A Colloids Surf B Biointerfaces; 2009 Nov; 74(1):340-9. PubMed ID: 19717287 [TBL] [Abstract][Full Text] [Related]
10. Extended release of high pI proteins from alginate microspheres via a novel encapsulation technique. Wells LA; Sheardown H Eur J Pharm Biopharm; 2007 Mar; 65(3):329-35. PubMed ID: 17156984 [TBL] [Abstract][Full Text] [Related]
11. PLGA-based drug delivery systems: importance of the type of drug and device geometry. Klose D; Siepmann F; Elkharraz K; Siepmann J Int J Pharm; 2008 Apr; 354(1-2):95-103. PubMed ID: 18055140 [TBL] [Abstract][Full Text] [Related]
12. In vitro analysis of the release of incorporated agents from sodium caseinate microspheres. Heelan BA; Corrigan OI J Microencapsul; 1997; 14(1):63-78. PubMed ID: 8994076 [TBL] [Abstract][Full Text] [Related]
13. Formulation and evaluation of ketorolac tromethamine-loaded albumin microspheres for potential intramuscular administration. Mathew ST; Devi SG; KV S AAPS PharmSciTech; 2007 Feb; 8(1):14. PubMed ID: 17408214 [TBL] [Abstract][Full Text] [Related]
14. Biodegradable chitosan scaffolds containing microspheres as carriers for controlled transforming growth factor-beta1 delivery for cartilage tissue engineering. Cai DZ; Zeng C; Quan DP; Bu LS; Wang K; Lu HD; Li XF Chin Med J (Engl); 2007 Feb; 120(3):197-203. PubMed ID: 17355821 [TBL] [Abstract][Full Text] [Related]
15. Streptomycin sulphate microspheres: dissolution rate studies and release kinetics. I. Gürkan H; Yalabik-Kaş HS; Sumnu M; Hincal AA J Microencapsul; 1987; 4(1):39-46. PubMed ID: 3504495 [TBL] [Abstract][Full Text] [Related]
16. Characterization of biodegradable drug delivery vehicles with the adhesive properties of leukocytes II: effect of degradation on targeting activity. Eniola AO; Hammer DA Biomaterials; 2005 Feb; 26(6):661-70. PubMed ID: 15282144 [TBL] [Abstract][Full Text] [Related]
17. Preparation of human serum albumin microspheres by a novel acetone-heat denaturation method. Chen CQ; Lin W; Coombes AG; Davis SS; Illum L J Microencapsul; 1994; 11(4):395-407. PubMed ID: 7931939 [TBL] [Abstract][Full Text] [Related]
18. A water-in-oil-in-oil-in-water (W/O/O/W) method for producing drug-releasing, double-walled microspheres. Zheng W Int J Pharm; 2009 Jun; 374(1-2):90-5. PubMed ID: 19446764 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterization of PLGA microspheres containing a staphylokinase variant (K35R). He JT; Tao XM; Mo W; Song HY Yao Xue Xue Bao; 2006 Jan; 41(1):12-8. PubMed ID: 16683521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]