BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38805008)

  • 21. Effect of Oxygen on Thermal and Radiation-Induced Chemistries in a Model Organotin Photoresist.
    Frederick RT; Diulus JT; Hutchison DC; Nyman M; Herman GS
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4514-4522. PubMed ID: 30606004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the Exposure Process in the Extreme Ultra Violet Lithography.
    Kim SK
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4466-4469. PubMed ID: 33714346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ambient-Pressure X-ray Photoelectron Spectroscopy Characterization of Radiation-Induced Chemistries of Organotin Clusters.
    Diulus JT; Frederick RT; Li M; Hutchison DC; Olsen MR; Lyubinetsky I; Árnadóttir L; Garfunkel EL; Nyman M; Ogasawara H; Herman GS
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2526-2534. PubMed ID: 30575394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resist Materials for Extreme Ultraviolet Lithography: Toward Low-Cost Single-Digit-Nanometer Patterning.
    Ashby PD; Olynick DL; Ogletree DF; Naulleau PP
    Adv Mater; 2015 Oct; 27(38):5813-9. PubMed ID: 26079187
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Review of recent advances in inorganic photoresists.
    Luo C; Xu C; Lv L; Li H; Huang X; Liu W
    RSC Adv; 2020 Feb; 10(14):8385-8395. PubMed ID: 35497823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoacid Generators for Biomedical Applications.
    Sun T; Kang L; Zhao H; Zhao Y; Gu Y
    Adv Sci (Weinh); 2024 Feb; 11(5):e2302875. PubMed ID: 38039443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High Sensitivity Resists for EUV Lithography: A Review of Material Design Strategies and Performance Results.
    Manouras T; Argitis P
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32823865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tin-oxo nanoclusters for extreme ultraviolet photoresists: Effects of ligands, counterions, and doping.
    Du T; Yang X; Zhao Y; Han P; Zhao J; Zhou S
    J Chem Phys; 2024 Apr; 160(15):. PubMed ID: 38629603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular Modeling of EUV Photoresist Revealing the Effect of Chain Conformation on Line-Edge Roughness Formation.
    Park J; Lee SG; Vesters Y; Severi J; Kim M; De Simone D; Oh HK; Hur SM
    Polymers (Basel); 2019 Nov; 11(12):. PubMed ID: 31766636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Progress in Polyhedral Oligomeric Silsesquioxane (POSS) Photoresists: A Comprehensive Review across Lithographic Systems.
    Wen Z; Liu X; Chen W; Zhou R; Wu H; Xia Y; Wu L
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescent Labeling to Investigate Nanopatterning Processes in Extreme Ultraviolet Lithography.
    Wu L; Hilbers MF; Lugier O; Thakur N; Vockenhuber M; Ekinci Y; Brouwer AM; Castellanos S
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51790-51798. PubMed ID: 34669380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular Engineering of UV/Vis Light-Emitting Diode (LED)-Sensitive Donor-π-Acceptor-Type Sulfonium Salt Photoacid Generators: Design, Synthesis, and Study of Photochemical and Photophysical Properties.
    Wu X; Jin M; Xie J; Malval JP; Wan D
    Chemistry; 2017 Nov; 23(62):15783-15789. PubMed ID: 28857291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extreme UV Resist Exhibiting Synergism between Chemical and Physical Crosslinking Mechanisms.
    Ku Y; Kim K; Oh HT; Park BG; Lee S; Lee JK; Koh C; Nishi T; Kim HW
    Langmuir; 2023 Mar; 39(9):3462-3470. PubMed ID: 36827550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-digit-resolution nanopatterning with extreme ultraviolet light for the 2.5 nm technology node and beyond.
    Mojarad N; Hojeij M; Wang L; Gobrecht J; Ekinci Y
    Nanoscale; 2015 Mar; 7(9):4031-7. PubMed ID: 25653148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polyarylenesulfonium Salt as a Novel and Versatile Nonchemically Amplified Negative Tone Photoresist for High-Resolution Extreme Ultraviolet Lithography Applications.
    Reddy PG; Pal SP; Kumar P; Pradeep CP; Ghosh S; Sharma SK; Gonsalves KE
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):17-21. PubMed ID: 28009502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coarse-Grained Modeling of EUV Patterning Process Reflecting Photochemical Reactions and Chain Conformations.
    Kim TY; Kang IH; Park J; Kim M; Oh HK; Hur SM
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorinated acid amplifiers for EUV lithography.
    Kruger S; Revuru S; Higgins C; Gibbons S; Freedman DA; Yueh W; Younkin TR; Brainard RL
    J Am Chem Soc; 2009 Jul; 131(29):9862-3. PubMed ID: 19569650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extreme Ultraviolet Lighting Using Carbon Nanotube-Based Cold Cathode Electron Beam.
    Yoo ST; Park KC
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500759
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron-induced fragmentation mechanisms in organic monomers and their implications for photoresist optimization for EUV lithography.
    Rathore A; Cipriani M; Huang CC; Amiaud L; Dablemont C; Lafosse A; Ingólfsson O; De Simone D; De Gendt S
    Phys Chem Chem Phys; 2021 Apr; 23(15):9228-9234. PubMed ID: 33885061
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensitivity study of two high-throughput resolution metrics for photoresists.
    Anderson CN; Naulleau PP
    Appl Opt; 2008 Jan; 47(1):56-63. PubMed ID: 18157277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.