These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Construction of dissipative particle dynamics models for complex fluids via the Mori-Zwanzig formulation. Li Z; Bian X; Caswell B; Karniadakis GE Soft Matter; 2014 Nov; 10(43):8659-72. PubMed ID: 25252001 [TBL] [Abstract][Full Text] [Related]
6. Dissipative particle dynamics for systems with high density of charges: Implementation of electrostatic interactions. Gavrilov AA; Chertovich AV; Kramarenko EY J Chem Phys; 2016 Nov; 145(17):174101. PubMed ID: 27825212 [TBL] [Abstract][Full Text] [Related]
7. Dissipative particle dynamics simulation study of poly(2-oxazoline)-based multicompartment micelle nanoreactor. Chun BJ; Fisher CC; Jang SS Phys Chem Chem Phys; 2016 Feb; 18(8):6284-90. PubMed ID: 26853511 [TBL] [Abstract][Full Text] [Related]
8. On the comparisons between dissipative particle dynamics simulations and self-consistent field calculations of diblock copolymer microphase separation. Sandhu P; Zong J; Yang D; Wang Q J Chem Phys; 2013 May; 138(19):194904. PubMed ID: 23697438 [TBL] [Abstract][Full Text] [Related]
9. Translation of Chemical Structure into Dissipative Particle Dynamics Parameters for Simulation of Surfactant Self-Assembly. Lavagnini E; Cook JL; Warren PB; Hunter CA J Phys Chem B; 2021 Apr; 125(15):3942-3952. PubMed ID: 33848165 [TBL] [Abstract][Full Text] [Related]
10. Liquid-liquid equilibria for soft-repulsive particles: improved equation of state and methodology for representing molecules of different sizes and chemistry in dissipative particle dynamics. Liyana-Arachchi TP; Jamadagni SN; Eike D; Koenig PH; Siepmann JI J Chem Phys; 2015 Jan; 142(4):044902. PubMed ID: 25638004 [TBL] [Abstract][Full Text] [Related]
11. High-fidelity scaling relationships for determining dissipative particle dynamics parameters from atomistic molecular dynamics simulations of polymeric liquids. Nafar Sefiddashti MH; Boudaghi-Khajehnobar M; Edwards BJ; Khomami B Sci Rep; 2020 Mar; 10(1):4458. PubMed ID: 32157144 [TBL] [Abstract][Full Text] [Related]
12. Comparative investigation of thermal and mechanical properties of cross-linked epoxy polymers with different curing agents by molecular dynamics simulation. Jeyranpour F; Alahyarizadeh G; Arab B J Mol Graph Model; 2015 Nov; 62():157-164. PubMed ID: 26432014 [TBL] [Abstract][Full Text] [Related]
13. Modeling the temperature dependent interfacial tension between organic solvents and water using dissipative particle dynamics. Mayoral E; Goicochea AG J Chem Phys; 2013 Mar; 138(9):094703. PubMed ID: 23485318 [TBL] [Abstract][Full Text] [Related]
14. A practical method to avoid bond crossing in two-dimensional dissipative particle dynamics simulations. Liu H; Xue YH; Qian HJ; Lu ZY; Sun CC J Chem Phys; 2008 Jul; 129(2):024902. PubMed ID: 18624558 [TBL] [Abstract][Full Text] [Related]
15. An automated calculation pipeline for differential pair interaction energies with molecular force fields using the Tinker Molecular Modeling Package. Bänsch F; Daniel M; Lanig H; Steinbeck C; Zielesny A J Cheminform; 2024 Aug; 16(1):96. PubMed ID: 39118180 [TBL] [Abstract][Full Text] [Related]
16. Multiscale Modeling of the Effect of Pressure on the Interfacial Tension and Other Cohesion Parameters in Binary Mixtures. Mayoral E; Nahmad-Achar E J Phys Chem B; 2016 Mar; 120(9):2372-9. PubMed ID: 26840645 [TBL] [Abstract][Full Text] [Related]
17. Molecular Dynamics Simulation and Experimental Studies on the Thermomechanical Properties of Epoxy Resin with Different Anhydride Curing Agents. Fu K; Xie Q; Lü F; Duan Q; Wang X; Zhu Q; Huang Z Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31163650 [TBL] [Abstract][Full Text] [Related]
18. Dissipative particle dynamics model of homogalacturonan based on molecular dynamics simulations. Pieczywek PM; Płaziński W; Zdunek A Sci Rep; 2020 Sep; 10(1):14691. PubMed ID: 32895471 [TBL] [Abstract][Full Text] [Related]
19. Theoretical Study on the Contribution of Interfacial Functional Groups to the Adhesive Interaction between Epoxy Resins and Aluminum Surfaces. Nakamura S; Yamamoto S; Tsuji Y; Tanaka K; Yoshizawa K Langmuir; 2022 May; 38(21):6653-6664. PubMed ID: 35588009 [TBL] [Abstract][Full Text] [Related]
20. Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: Application to polymer melts. Li Z; Lee HS; Darve E; Karniadakis GE J Chem Phys; 2017 Jan; 146(1):014104. PubMed ID: 28063444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]