These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38805013)

  • 1. Superhydrophobic Highly Flexible Triple-Network Polyorganosiloxane-Based Aerogels for Thermal Insulation, Oil-Water Separation, and Strain/Pressure Sensing.
    Wang Y; Xi S; Zhou B; Zu G; Liang X; Zhang X; Shen J; Wang X
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):30324-30335. PubMed ID: 38805013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superflexible Multifunctional Polyvinylpolydimethylsiloxane-Based Aerogels as Efficient Absorbents, Thermal Superinsulators, and Strain Sensors.
    Zu G; Kanamori K; Maeno A; Kaji H; Nakanishi K
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9722-9727. PubMed ID: 29957853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transparent, Superflexible Doubly Cross-Linked Polyvinylpolymethylsiloxane Aerogel Superinsulators via Ambient Pressure Drying.
    Zu G; Shimizu T; Kanamori K; Zhu Y; Maeno A; Kaji H; Shen J; Nakanishi K
    ACS Nano; 2018 Jan; 12(1):521-532. PubMed ID: 29309140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superhydrophobic highly flexible doubly cross-linked aerogel/carbon nanotube composites as strain/pressure sensors.
    Zu G; Wang X; Kanamori K; Nakanishi K
    J Mater Chem B; 2020 Jun; 8(22):4883-4889. PubMed ID: 32149308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrosilylation Adducts to Produce Wide-Temperature Flexible Polysiloxane Aerogel under Ambient Temperature and Pressure Drying.
    Guo BF; Wang YJ; Qu ZH; Yang F; Qin YQ; Li Y; Zhang GD; Gao JF; Shi Y; Song P; Tang LC
    Small; 2024 Apr; 20(14):e2309272. PubMed ID: 37988706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Rigid-Flexible" Anisotropic Biomass-Derived Aerogels with Superior Mechanical Properties for Oil Recovery and Thermal Insulation.
    Tan Z; Yoo CG; Yang D; Liu W; Qiu X; Zheng D
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):42080-42093. PubMed ID: 37624365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superelastic and superflexible cellulose aerogels for thermal insulation and oil/water separation.
    Ke W; Ge F; Shi X; Zhang Y; Wu T; Zhu X; Cheng Y; Shi Y; Wang Z; Yuan L; Yan Y
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129245. PubMed ID: 38191109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible, Thermally Stable, and Ultralightweight Polyimide-CNT Aerogel Composite Films for Energy Storage Applications.
    Aghababaei Tafreshi O; Saadatnia Z; Ghaffari-Mosanenzadeh S; Kumar A; Salari M; Mohseni Taromsari S; Rastegardoost MM; Park CB; Naguib HE
    ACS Appl Mater Interfaces; 2023 Nov; 15(43):50360-50377. PubMed ID: 37847866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ultra-light flexible aerogel-based on methane derived CNTs as a reinforcing agent in silica-CMC matrix for efficient oil adsorption.
    Parmar KR; Dora DTK; Pant KK; Roy S
    J Hazard Mater; 2019 Aug; 375():206-215. PubMed ID: 31071618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Synthesis of Flexible Methylsilsesquioxane Aerogels with Surface Modifications for Sound- Absorbance, Fast Dye Adsorption and Oil/Water Separation.
    Guo X; Shan J; Lai Z; Lei W; Ding R; Zhang Y; Yang H
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29670068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-light-weight, anti-flammable and water-proof cellulosic aerogels for thermal insulation applications.
    Guo W; Chen S; Liang F; Jin L; Ji C; Zhang P; Fei B
    Int J Biol Macromol; 2023 Aug; 246():125343. PubMed ID: 37331534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Devisable pore structures and tunable thermal management properties of aerogels composed of carbon nanotubes and cellulose nanofibers with various aspect ratios.
    Wang M; Miao X; Hou C; Xu K; Ke Z; Dai F; Liu M; Li H; Chen C
    Carbohydr Polym; 2024 Jan; 323():121437. PubMed ID: 37940302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong, Machinable, and Insulating Chitosan-Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths.
    Guerrero-Alburquerque N; Zhao S; Adilien N; Koebel MM; Lattuada M; Malfait WJ
    ACS Appl Mater Interfaces; 2020 May; 12(19):22037-22049. PubMed ID: 32302092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monolithic carbon aerogels within foam framework for high-temperature thermal insulation and organics absorption.
    Wu K; Cao J; Qian Z; Luo Y; Niu B; Zhang Y; Long D
    J Colloid Interface Sci; 2022 Jul; 618():259-269. PubMed ID: 35339962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nacre-Mimetic Nanocomposite Aerogels with Exceptional Mechanical Performance for Thermal Superinsulation at Extreme Conditions.
    Zhang J; Zheng J; Gao M; Xu C; Cheng Y; Zhu M
    Adv Mater; 2023 Jul; 35(29):e2300813. PubMed ID: 37080594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superelastic Multifunctional Aminosilane-Crosslinked Graphene Aerogels for High Thermal Insulation, Three-Component Separation, and Strain/Pressure-Sensing Arrays.
    Zu G; Kanamori K; Nakanishi K; Lu X; Yu K; Huang J; Sugimura H
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43533-43542. PubMed ID: 31674184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose Diacetate Aerogels with Low Drying Shrinkage, High-Efficient Thermal Insulation, and Superior Mechanical Strength.
    Zhang S; Lu K; Hu Y; Xu G; Wang J; Liao Y; Yu S
    Gels; 2024 Mar; 10(3):. PubMed ID: 38534628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanically Strong, Low Thermal Conductivity and Improved Thermal Stability Polyvinyl Alcohol-Graphene-Nanocellulose Aerogel.
    Wang X; Xie P; Wan K; Miao Y; Liu Z; Li X; Wang C
    Gels; 2021 Oct; 7(4):. PubMed ID: 34698206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastrong lightweight nanocellulose-based composite aerogels with robust superhydrophobicity and durable thermal insulation under extremely environment.
    Yang Y; Dang B; Wang C; Chen Y; Chen K; Chen X; Li Y; Sun Q
    Carbohydr Polym; 2024 Jan; 323():121392. PubMed ID: 37940285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal conductivity of polyvinylpolymethylsiloxane aerogels with high specific surface area.
    Wang L; Feng J; Jiang Y; Li L; Feng J
    RSC Adv; 2019 Mar; 9(14):7833-7841. PubMed ID: 35521213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.