These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 38805476)

  • 21. Higher-Order Chromatin Organization Using 3D DNA Fluorescent In Situ Hybridization.
    Szabo Q; Cavalli G; Bantignies F
    Methods Mol Biol; 2021; 2157():221-237. PubMed ID: 32820407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Labelling quality and chromosome morphology after low temperature FISH analysed by scanning far-field and near-field optical microscopy.
    Winkler R; Perner B; Rapp A; Durm M; Cremer C; Greulich KO; Hausmann M
    J Microsc; 2003 Jan; 209(Pt 1):23-33. PubMed ID: 12535181
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome oligopaint via local denaturation fluorescence in situ hybridization.
    Wang Y; Cottle WT; Wang H; Feng XA; Mallon J; Gavrilov M; Bailey S; Ha T
    Mol Cell; 2021 Apr; 81(7):1566-1577.e8. PubMed ID: 33657402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of DNA-halo preparations for high-resolution DNA in situ hybridization.
    Raap AK; Wiegant J
    Methods Mol Biol; 1994; 33():123-30. PubMed ID: 7894574
    [No Abstract]   [Full Text] [Related]  

  • 25. Simultaneous visualization of FISH signals and bromo-deoxyuridine incorporation by formamide-free DNA denaturation.
    Moralli D; Monaco ZL
    Methods Mol Biol; 2010; 659():203-18. PubMed ID: 20809313
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-enzymatic, low temperature fluorescence in situ hybridization of human chromosomes with a repetitive alpha-satellite probe.
    Durm M; Haar FM; Hausmann M; Ludwig H; Cremer C
    Z Naturforsch C J Biosci; 1997; 52(1-2):82-8. PubMed ID: 9090071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR-FISH: A CRISPR/Cas9-Based In Situ Labeling Method.
    Potlapalli BP; Ishii T; Nagaki K; Somasundaram S; Houben A
    Methods Mol Biol; 2023; 2672():315-335. PubMed ID: 37335486
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High resolution free chromatin/DNA fiber fluorescent in situ hybridization.
    Heng HH; Tsui LC
    J Chromatogr A; 1998 May; 806(1):219-29. PubMed ID: 9639891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two simple procedures for releasing chromatin from routinely fixed cells for fluorescence in situ hybridization.
    Fidlerová H; Senger G; Kost M; Sanseau P; Sheer D
    Cytogenet Cell Genet; 1994; 65(3):203-5. PubMed ID: 8222761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simple non-toxic ethylene carbonate fluorescence in situ hybridization (EC-FISH) for simultaneous detection of repetitive DNA sequences and fluorescent bands in plants.
    Golczyk H
    Protoplasma; 2019 May; 256(3):873-880. PubMed ID: 30656455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D-FISH Analysis of the Spatial Genome Organization in Skin Cells in Situ.
    Mardaryev AN; Fessing MY
    Methods Mol Biol; 2020; 2154():217-230. PubMed ID: 32314220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromatin condensation and sensitivity of DNA in situ to denaturation during cell cycle and apoptosis--a confocal microscopy study.
    Dobrucki J; Darzynkiewicz Z
    Micron; 2001 Oct; 32(7):645-52. PubMed ID: 11334733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved procedure for the measurement of telomere length in whole cells by PNA probe and flow cytometry.
    Carbonari M; Mancaniello D; Cibati M; Catizone A; Fiorilli M
    Cell Prolif; 2010 Dec; 43(6):553-61. PubMed ID: 21039993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developing novel methods to image and visualize 3D genomes.
    Ma T; Chen L; Shi M; Niu J; Zhang X; Yang X; Zhanghao K; Wang M; Xi P; Jin D; Zhang M; Gao J
    Cell Biol Toxicol; 2018 Oct; 34(5):367-380. PubMed ID: 29577183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis.
    Celeda D; Aldinger K; Haar FM; Hausmann M; Durm M; Ludwig H; Cremer C
    Cytometry; 1994 Sep; 17(1):13-25. PubMed ID: 8001456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High Resolution Fiber-Fluorescence In Situ Hybridization.
    Ye CJ; Heng HH
    Methods Mol Biol; 2017; 1541():151-166. PubMed ID: 27910022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strand-specific fluorescence in situ hybridization: the CO-FISH family.
    Bailey SM; Goodwin EH; Cornforth MN
    Cytogenet Genome Res; 2004; 107(1-2):14-7. PubMed ID: 15305050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-denaturing fluorescence in situ hybridization to find replication origins in a specific genome region on the DNA fiber.
    Sugimura K; Takebayashi S; Ogata S; Taguchi H; Okumura K
    Biosci Biotechnol Biochem; 2007 Feb; 71(2):627-32. PubMed ID: 17284819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescence In Situ Hybridization (FISH) and Immunolabeling on 3D Preserved Nuclei.
    Bey TD; Koini M; Fransz P
    Methods Mol Biol; 2018; 1675():467-480. PubMed ID: 29052208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells.
    Deng W; Shi X; Tjian R; Lionnet T; Singer RH
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11870-5. PubMed ID: 26324940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.