These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 38805702)
21. Factors Influencing Clinician Trust in Predictive Clinical Decision Support Systems for In-Hospital Deterioration: Qualitative Descriptive Study. Schwartz JM; George M; Rossetti SC; Dykes PC; Minshall SR; Lucas E; Cato KD JMIR Hum Factors; 2022 May; 9(2):e33960. PubMed ID: 35550304 [TBL] [Abstract][Full Text] [Related]
22. Trust in the physician-patient relationship in developing healthcare settings: a quantitative exploration. Gopichandran V; Chetlapalli SK Indian J Med Ethics; 2015; 12(3):141-8. PubMed ID: 26228046 [TBL] [Abstract][Full Text] [Related]
23. Future Medical Artificial Intelligence Application Requirements and Expectations of Physicians in German University Hospitals: Web-Based Survey. Maassen O; Fritsch S; Palm J; Deffge S; Kunze J; Marx G; Riedel M; Schuppert A; Bickenbach J J Med Internet Res; 2021 Mar; 23(3):e26646. PubMed ID: 33666563 [TBL] [Abstract][Full Text] [Related]
24. Status of AI-Enabled Clinical Decision Support Systems Implementations in China. Ji M; Chen X; Genchev GZ; Wei M; Yu G Methods Inf Med; 2021 Dec; 60(5-06):123-132. PubMed ID: 34695871 [TBL] [Abstract][Full Text] [Related]
25. Patient-physician trust among adults of rural Tamil Nadu: a community-based survey. Baidya M; Gopichandran V; Kosalram K J Postgrad Med; 2014; 60(1):21-6. PubMed ID: 24625935 [TBL] [Abstract][Full Text] [Related]
26. Trust in artificial intelligence for medical diagnoses. Juravle G; Boudouraki A; Terziyska M; Rezlescu C Prog Brain Res; 2020; 253():263-282. PubMed ID: 32771128 [TBL] [Abstract][Full Text] [Related]
27. Artificial Intelligence-Based Clinical Decision Support Systems in Geriatrics: An Ethical Analysis. Skuban-Eiseler T; Orzechowski M; Denkinger M; Kocar TD; Leinert C; Steger F J Am Med Dir Assoc; 2023 Sep; 24(9):1271-1276.e4. PubMed ID: 37453451 [TBL] [Abstract][Full Text] [Related]
28. Trust in and Acceptance of Artificial Intelligence Applications in Medicine: Mixed Methods Study. Shevtsova D; Ahmed A; Boot IWA; Sanges C; Hudecek M; Jacobs JJL; Hort S; Vrijhoef HJM JMIR Hum Factors; 2024 Jan; 11():e47031. PubMed ID: 38231544 [TBL] [Abstract][Full Text] [Related]
29. Understanding Physician's Perspectives on AI in Health Care: Protocol for a Sequential Multiple Assignment Randomized Vignette Study. Kim JP; Yang HJ; Kim B; Ryan K; Roberts LW JMIR Res Protoc; 2024 Apr; 13():e54787. PubMed ID: 38573756 [TBL] [Abstract][Full Text] [Related]
30. Doctors' perception on the ethical use of AI-enabled clinical decision support systems for antibiotic prescribing recommendations in Singapore. Huang Z; Lim HY; Ow JT; Sun SH; Chow A Front Public Health; 2024; 12():1420032. PubMed ID: 39011326 [TBL] [Abstract][Full Text] [Related]
31. Use and Control of Artificial Intelligence in Patients Across the Medical Workflow: Single-Center Questionnaire Study of Patient Perspectives. Lennartz S; Dratsch T; Zopfs D; Persigehl T; Maintz D; Große Hokamp N; Pinto Dos Santos D J Med Internet Res; 2021 Feb; 23(2):e24221. PubMed ID: 33595451 [TBL] [Abstract][Full Text] [Related]
32. How does trust affect patient preferences for participation in decision-making? Kraetschmer N; Sharpe N; Urowitz S; Deber RB Health Expect; 2004 Dec; 7(4):317-26. PubMed ID: 15544684 [TBL] [Abstract][Full Text] [Related]
33. Exploring perceptions of healthcare technologies enabled by artificial intelligence: an online, scenario-based survey. Antes AL; Burrous S; Sisk BA; Schuelke MJ; Keune JD; DuBois JM BMC Med Inform Decis Mak; 2021 Jul; 21(1):221. PubMed ID: 34284756 [TBL] [Abstract][Full Text] [Related]
34. Artificial intelligence and clinical decision support: clinicians' perspectives on trust, trustworthiness, and liability. Jones C; Thornton J; Wyatt JC Med Law Rev; 2023 Nov; 31(4):501-520. PubMed ID: 37218368 [TBL] [Abstract][Full Text] [Related]
35. Acceptance, Barriers, and Facilitators to Implementing Artificial Intelligence-Based Decision Support Systems in Emergency Departments: Quantitative and Qualitative Evaluation. Fujimori R; Liu K; Soeno S; Naraba H; Ogura K; Hara K; Sonoo T; Ogura T; Nakamura K; Goto T JMIR Form Res; 2022 Jun; 6(6):e36501. PubMed ID: 35699995 [TBL] [Abstract][Full Text] [Related]
36. Clinician acceptance of complex clinical decision support systems for treatment allocation of patients with chronic low back pain. Jansen-Kosterink S; van Velsen L; Cabrita M BMC Med Inform Decis Mak; 2021 Apr; 21(1):137. PubMed ID: 33906665 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of a Computer-Aided Clinical Decision Support System for Point-of-Care Use in Low-Resource Primary Care Settings: Acceptability Evaluation Study. Tegenaw GS; Sori DA; Teklemariam GK; Verbeke F; Cornelis J; Jansen B JMIR Hum Factors; 2024 Jun; 11():e47631. PubMed ID: 38861298 [TBL] [Abstract][Full Text] [Related]
39. The ethics of machine learning-based clinical decision support: an analysis through the lens of professionalisation theory. Heyen NB; Salloch S BMC Med Ethics; 2021 Aug; 22(1):112. PubMed ID: 34412649 [TBL] [Abstract][Full Text] [Related]
40. Effectiveness of Artificial Intelligence (AI) in Clinical Decision Support Systems and Care Delivery. Ouanes K; Farhah N J Med Syst; 2024 Aug; 48(1):74. PubMed ID: 39133332 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]