BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38805822)

  • 21. Effects of arsenic on gut microbiota and its bioaccumulation and biotransformation in freshwater invertebrate.
    Bi X; Wang Y; Qiu A; Wu S; Zhan W; Liu H; Li H; Qiu R; Chen G
    J Hazard Mater; 2024 Jul; 472():134623. PubMed ID: 38754231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chronic copper toxicity in the estuarine copepod Acartia tonsa at different salinities.
    Lauer MM; Bianchini A
    Environ Toxicol Chem; 2010 Oct; 29(10):2297-303. PubMed ID: 20872694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intestinal uptake and low transformation increase the bioaccumulation of inorganic arsenic in freshwater zebrafish.
    Zhang J; Tan QG; Huang L; Ye Z; Wang X; Xiao T; Wu Y; Zhang W; Yan B
    J Hazard Mater; 2022 Jul; 434():128904. PubMed ID: 35452982
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Species-specific bioaccumulation and correlated health risk of arsenic compounds in freshwater fish from a typical mine-impacted river.
    Jia Y; Wang L; Li S; Cao J; Yang Z
    Sci Total Environ; 2018 Jun; 625():600-607. PubMed ID: 29294442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative contribution of trophic transfer and biotransformation on arsenobetaine bioaccumulation in two marine fish.
    Zhang W; Guo Z; Zhou Y; Chen L; Zhang L
    Aquat Toxicol; 2016 Oct; 179():65-71. PubMed ID: 27584085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The relative importance of waterborne and dietborne As exposure on survival and growth of juvenile fathead minnows.
    Erickson RJ; Mount DR; Highland TL; Hockett JR; Jenson CT; Lahren TJ
    Aquat Toxicol; 2019 Jun; 211():18-28. PubMed ID: 30908994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ecotoxicity of triphenyltin on the marine copepod Tigriopus japonicus at various biological organisations: from molecular to population-level effects.
    Yi AX; Han J; Lee JS; Leung KM
    Ecotoxicology; 2014 Sep; 23(7):1314-25. PubMed ID: 24981692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Developmental retardation, reduced fecundity, and modulated expression of the defensome in the intertidal copepod Tigriopus japonicus exposed to BDE-47 and PFOS.
    Han J; Won EJ; Lee MC; Seo JS; Lee SJ; Lee JS
    Aquat Toxicol; 2015 Aug; 165():136-43. PubMed ID: 26037098
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of water accommodated fractions (WAFs) of crude oil in two congeneric copepods Tigriopus sp.
    Han J; Kim HS; Kim IC; Kim S; Hwang UK; Lee JS
    Ecotoxicol Environ Saf; 2017 Nov; 145():511-517. PubMed ID: 28783601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efflux behavior of inorganic mercury and methylmercury in the marine copepod Tigriopus japonicus.
    Yu ZG; Zhang L; Wu Y; Jin B
    Sci Total Environ; 2020 Feb; 703():135655. PubMed ID: 31767324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prey-specific determination of arsenic bioaccumulation and transformation in a marine benthic fish.
    Zhang W; Zhang L; Wang WX
    Sci Total Environ; 2017 May; 586():296-303. PubMed ID: 28185737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of Bioavailability and Biotransformation of Inorganic and Organic Arsenic to Two Marine Fish.
    Zhang W; Wang WX; Zhang L
    Environ Sci Technol; 2016 Mar; 50(5):2413-23. PubMed ID: 26835720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toxicity and bioaccumulation of three hexabromocyclododecane diastereoisomers in the marine copepod Tigriopus japonicas.
    Hong H; Lv D; Liu W; Huang L; Chen L; Shen R; Shi D
    Aquat Toxicol; 2017 Jul; 188():1-9. PubMed ID: 28437657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gut microbiota promote biotransformation and bioaccumulation of arsenic in tilapia.
    Song D; Chen L; Zhu S; Zhang L
    Environ Pollut; 2022 Jul; 305():119321. PubMed ID: 35439597
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acute and chronic toxicity study of the water accommodated fraction (WAF), chemically enhanced WAF (CEWAF) of crude oil and dispersant in the rock pool copepod Tigriopus japonicus.
    Lee KW; Shim WJ; Yim UH; Kang JH
    Chemosphere; 2013 Aug; 92(9):1161-8. PubMed ID: 23466279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of nano zinc oxide on the acute and reproductive toxicity of cadmium and lead to the marine copepod Tigriopus japonicus.
    Yi X; Chi T; Liu B; Liu C; Feng G; Dai X; Zhang K; Zhou H
    Comp Biochem Physiol C Toxicol Pharmacol; 2019 Aug; 222():118-124. PubMed ID: 31028933
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The copepod Tigriopus: a promising marine model organism for ecotoxicology and environmental genomics.
    Raisuddin S; Kwok KW; Leung KM; Schlenk D; Lee JS
    Aquat Toxicol; 2007 Jul; 83(3):161-73. PubMed ID: 17560667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to the marine copepod Tigriopus japonicus.
    Bao VW; Lui GC; Leung KM
    Aquat Toxicol; 2014 Dec; 157():81-93. PubMed ID: 25456222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidative damage effects in the copepod Tigriopus japonicus Mori experimentally exposed to nickel.
    Wang M; Wang G
    Ecotoxicology; 2010 Feb; 19(2):273-84. PubMed ID: 19821026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acute toxicities of trace metals and common xenobiotics to the marine copepod Tigriopus japonicus: Evaluation of its use as a benchmark species for routine ecotoxicity tests in Western Pacific coastal regions.
    Lee KW; Raisuddin S; Hwang DS; Park HG; Lee JS
    Environ Toxicol; 2007 Oct; 22(5):532-8. PubMed ID: 17696134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.