These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38805823)

  • 1. Highly radioiodine gas capture by 2-mercaptobenzimidazole-functionalized Bi/Mg oxide and effective iodine waste immobilization by etidronic-Bi
    Muhire C; Zhang D; Chang C; Zhang X; Li D; Zhiren G; Zhang Z; Zhang F; Hou J; Li J; Xu X
    J Hazard Mater; 2024 Aug; 474():134688. PubMed ID: 38805823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bi
    Chee TS; Lee S; Ng WJ; Akmal M; Ryu HJ
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):40438-40450. PubMed ID: 37581564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of bismuth-based metal-organic frameworks for effective capture and immobilization of radioiodine gas.
    Jung YE; Yang JH; Yim MS
    J Hazard Mater; 2024 Apr; 467():133777. PubMed ID: 38359759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Retention Immobilization of Iodine in B-Bi-Zn Oxide Glass Using Bi
    Xian Q; Xiao X; Yu J; Gan Y; Chen L; He X; Wang E; Dan H; Zhu L; Ding Y; Duan T
    Inorg Chem; 2022 Dec; 61(48):19633-19641. PubMed ID: 36383924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemically Stable Guanidinium Covalent Organic Framework for the Efficient Capture of Low-Concentration Iodine at High Temperatures.
    Zhang Z; Dong X; Yin J; Li ZG; Li X; Zhang D; Pan T; Lei Q; Liu X; Xie Y; Shui F; Li J; Yi M; Yuan J; You Z; Zhang L; Chang J; Zhang H; Li W; Fang Q; Li B; Bu XH; Han Y
    J Am Chem Soc; 2022 Apr; 144(15):6821-6829. PubMed ID: 35380829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur vacancy-rich bismuth sulfide nanowire derived from CAU-17 for radioactive iodine capture in complex environments: Performance and intrinsic mechanisms.
    Chen KW; Zhou XY; Dai XJ; Chen YT; Li SX; Gong CH; Wang P; Mao P; Jiao Y; Chen K; Yang Y
    J Hazard Mater; 2024 Jul; 473():134584. PubMed ID: 38761762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel synthesis of Bi-Bi
    Zou H; Yi F; Song M; Wang X; Bian L; Li W; Pan N; Jiang X
    J Hazard Mater; 2019 Mar; 365():81-87. PubMed ID: 30412810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile synthesis of novel Bi
    Xian Q; Chen L; Fan W; Liu Y; He X; Dan H; Zhu L; Ding Y; Duan T
    J Hazard Mater; 2022 Feb; 424(Pt C):127678. PubMed ID: 34775310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iodine Adsorption in Metal Organic Frameworks in the Presence of Humidity.
    Banerjee D; Chen X; Lobanov SS; Plonka AM; Chan X; Daly JA; Kim T; Thallapally PK; Parise JB
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10622-10626. PubMed ID: 29547256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of recent developments in iodine wasteform production.
    Asmussen RM; Turner J; Chong S; Riley BJ
    Front Chem; 2022; 10():1043653. PubMed ID: 36618856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in the removal of radioactive iodine by bismuth-based materials.
    Hao Y; Tian Z; Liu C; Xiao C
    Front Chem; 2023; 11():1122484. PubMed ID: 36762197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Cucurbit[8]uril-Based Supramolecular Framework Material for Reversible Iodine Capture in the Vapor Phase and Solution.
    Lu Y; Yu Z; Zhang T; Pan D; Dai J; Li Q; Tao Z; Xiao X
    Small; 2024 Apr; 20(16):e2308175. PubMed ID: 38032163
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Büyükçakir O
    Turk J Chem; 2024; 48(4):631-642. PubMed ID: 39296789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous MOF-808@PVDF beads for removal of iodine from gas streams.
    Wang L; Chen P; Dong X; Zhang W; Zhao S; Xiao S; Ouyang Y
    RSC Adv; 2020 Dec; 10(73):44679-44687. PubMed ID: 35516247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional-Network-Structured Bismuth-Based Silica Aerogel Fiber Felt for Highly Efficient Immobilization of Iodine.
    Cao J; Duan S; Zhao Q; Chen G; Wang Z; Liu R; Zhu L; Duan T
    Langmuir; 2023 Sep; 39(36):12910-12919. PubMed ID: 37649325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable Synthesis of Porous Cu-BTC@polymer Composite Beads for Iodine Capture.
    Zhao Q; Zhu L; Lin G; Chen G; Liu B; Zhang L; Duan T; Lei J
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42635-42645. PubMed ID: 31633332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linkage Design in Two-Dimensional Covalent Organic Frameworks for High Iodine Uptake.
    Zhang Y; Shi W; Zhao Y; Zhang C; Zhi Y
    Macromol Rapid Commun; 2023 Apr; 44(7):e2200787. PubMed ID: 36717982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetrathiafulvalene-based covalent organic frameworks for ultrahigh iodine capture.
    Chang J; Li H; Zhao J; Guan X; Li C; Yu G; Valtchev V; Yan Y; Qiu S; Fang Q
    Chem Sci; 2021 May; 12(24):8452-8457. PubMed ID: 34221327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of NO
    Baskaran K; Elliott C; Ali M; Moon J; Beland J; Cohrs D; Chong S; Riley BJ; Chidambaram D; Carlson K
    J Hazard Mater; 2023 Mar; 446():130644. PubMed ID: 36587601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.