These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38805956)

  • 101. A highly sensitive biosensor for tumor maker alpha fetoprotein based on poly(ethylene glycol) doped conducting polymer PEDOT.
    Cui M; Song Z; Wu Y; Guo B; Fan X; Luo X
    Biosens Bioelectron; 2016 May; 79():736-41. PubMed ID: 26774088
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Advancements in tailoring PEDOT: PSS properties for bioelectronic applications: A comprehensive review.
    Seiti M; Giuri A; Corcione CE; Ferraris E
    Biomater Adv; 2023 Nov; 154():213655. PubMed ID: 37866232
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Stretchable screen-printed PEDOT:PSS electrodes for upper-arm surface electromyography.
    Spanu A; Bonfiglio A; Pani D
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4143-4146. PubMed ID: 33018910
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Solvent Treatment of Wet-Spun PEDOT: PSS Fibers for Fiber-Based Wearable pH Sensing.
    Reid DO; Smith RE; Garcia-Torres J; Watts JF; Crean C
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569329
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Straightforward Production Methods for Diverse Porous PEDOT:PSS Structures and Their Characterization.
    Brendgen R; Grethe T; Schwarz-Pfeiffer A
    Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123965
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Bioinspired Flexible Hydrogelation with Programmable Properties for Tactile Sensing.
    Wang Y; Geng Q; Lyu H; Sun W; Fan X; Ma K; Wu K; Wang J; Wang Y; Mei D; Guo C; Xiu P; Pan D; Tao K
    Adv Mater; 2024 Jul; 36(29):e2401678. PubMed ID: 38678380
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Microneedle Array Electrodes Fabricated With 3D Printing Technology for High-Quality Electrophysiological Acquisition.
    Fu J; Huang S; Cao J; Huang J; Xu D; Jiang N; Li X; Li G; Fang P
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2460-2469. PubMed ID: 38959137
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Evaluation of a Voltametric E-Tongue Combined with Data Preprocessing for Fast and Effective Machine Learning-Based Classification of Tomato Purées by Cultivar.
    Magnani G; Giliberti C; Errico D; Stighezza M; Fortunati S; Mattarozzi M; Boni A; Bianchi V; Giannetto M; De Munari I; Cagnoni S; Careri M
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894376
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Solvent-Triggered, Ultra-Adhesive, Conductive, and Biocompatible Transition Gels for Wearable Devices.
    Sha D; Ding D; Tang S; Ma Z; Liu C; Yuan Y
    Small; 2024 Jun; 20(26):e2310731. PubMed ID: 38247187
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Formation of Anisotropic Conducting Interlayer for High-Resolution Epidermal Electromyography Using Mixed-Conducting Particulate Composite.
    Zhao Z; Yu H; Wisniewski DJ; Cea C; Ma L; Trautmann EM; Churchland MM; Gelinas JN; Khodagholy D
    Adv Sci (Weinh); 2024 Jul; 11(27):e2308014. PubMed ID: 38600655
    [TBL] [Abstract][Full Text] [Related]  

  • 111. High Density Body Surface Potential Mapping with Conducting Polymer-Eutectogel Electrode Arrays for ECG imaging.
    Serrano RR; Velasco-Bosom S; Dominguez-Alfaro A; Picchio ML; Mantione D; Mecerreyes D; Malliaras GG
    Adv Sci (Weinh); 2024 Jul; 11(27):e2301176. PubMed ID: 37203308
    [TBL] [Abstract][Full Text] [Related]  

  • 112. PEDOT-based stretchable optoelectronic materials and devices for bioelectronic interfaces.
    Li W; Li Y; Song Z; Wang YX; Hu W
    Chem Soc Rev; 2024 Oct; 53(21):10575-10603. PubMed ID: 39254255
    [TBL] [Abstract][Full Text] [Related]  

  • 113. 3D printed PEDOT:PSS-based conducting and patternable eutectogel electrodes for machine learning on textiles.
    Ruiz-Mateos Serrano R; Aguzin A; Mitoudi-Vagourdi E; Tao X; Naegele TE; Jin AT; Lopez-Larrea N; Picchio ML; Vinicio Alban-Paccha M; Minari RJ; Mecerreyes D; Dominguez-Alfaro A; Malliaras GG
    Biomaterials; 2024 Oct; 310():122624. PubMed ID: 38805956
    [TBL] [Abstract][Full Text] [Related]  

  • 114. 3D printing of highly conductive and strongly adhesive PEDOT:PSS hydrogel-based bioelectronic interface for accurate electromyography monitoring.
    Wan R; Liu S; Li Z; Li G; Li H; Li J; Xu J; Liu X
    J Colloid Interface Sci; 2025 Jan; 677(Pt A):198-207. PubMed ID: 38816323
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Ambulatory Evaluation of ECG Signals Obtained Using Washable Textile-Based Electrodes Made with Chemically Modified PEDOT:PSS.
    Ankhili A; Tao X; Cochrane C; Koncar V; Coulon D; Tarlet JM
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669584
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 117.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 118.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 119.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 120.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.